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Abstract
Spatial neglect has been a phenomenon of interest
for perceptual and neuropsychological researchers for
decades. However, the underlying cognitive processes
remain unclear. We provide a Bayesian framework for
the classic line bisection task in spatial neglect, regard-
ing bisection responses as rational inferences in the face
of uncertain information. A Bayesian observer perceives
the left and right endpoints of a line with uncertainty, and
leverages prior expectations about line lengths to com-
pensate for this uncertainty. This Bayesian model pro-
vides a basis for characterizing different patterns of ne-
glect behavior. Our model also captures the paradoxical
cross-over effect observed in earlier studies. It provides
measures that correlate well with measures from other
neglect tests, and can accurately distinguish stroke pa-
tients from healthy controls.
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Spatial neglect, a pronounced asymmetry of attention and
behavior away from one side of space and towards the other,
is a neuropsychological disorder that typically results from
right hemispheric brain damage. The line bisection task is
one of the most widespread tasks to measure spatial neglect
(Schenkenberg, Bradford, & Ajax, 1980; Sperber & Karnath,
2016). Participants are required to mark the midpoint of a hor-
izontal line (Figure 1a). Patients with spatial neglect typically
mark to the right of the true midpoint, which is conventionally
explained as a distortion or compression of the perceived left
space (Bisiach, Bulgarelli, Sterzi, & Vallar, 1983; Milner, Har-
vey, Roberts, & Forster, 1993).

Some debates remain about how we should interpret the
line bisection task. Firstly, the correlation between the di-
rectional bisection error measure (DBE, the average devia-
tion of participants’ responses from the true midpoints across
trials) and other spatial neglect tasks, such as target cancel-
lation or figure copying, is relatively low (Sperber & Karnath,
2016; McIntosh, Ietswaart, & Milner, 2017). Besides, it was
found that neglect patients sometimes mark the midpoint as
left rather than right of the true midpoint, a paradoxical find-
ing known as the cross-over effect (Marshall & Halligan, 1988;
McIntosh, Schindler, Birchall, & Milner, 2005).

One proposal to make sense of these data is that, rather
than underestimating the leftward extent of the line, patients in
the line bisection task may lack a clear idea of where the left
endpoint is (McIntosh et al., 2005). Indeed, it was found that
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Figure 1: The line bisection task: a) Participants are asked to
mark the midpoint of the line. Left endpoint (l), right endpoint
(r), true midpoint (m), and response (c) are not marked on
the stimulus sheet itself. b) Spatial neglect patients may have
lower left-side perceptual precision.

when the left and right endpoint positions were manipulated
independently across trials, patients’ responses were much
more affected by the right endpoint than the left endpoint, an
asymmetry which was captured by a novel dependent mea-
sure called endpoint weightings bias(McIntosh et al., 2005,
2017; McIntosh, 2018, see below).

We show that a Bayesian framework provides a way to for-
malize and extend the above proposal, and can explain vari-
ous patterns in human performance in the task. This Bayesian
approach frames the bisection problem as one of rational in-
ferences in the face of uncertain or unreliable information, so
that observers must balance prior expectations and evidence
when making decisions (De Lange, Heilbron, & Kok, 2018).

The Bayesian neglect model
Intuitively, as shown in Figure 1b, the Bayesian model as-
sumes the observer’s perceived left and right endpoints follow
Gaussian distributions with a mean at the actual endpoint and
some uncertainty. Three key assumptions guide the Bayesian
perspective on the line bisection task:

1. The midpoint response c should have the same distance
from the perceived left PL and right PR endpoints, i.e., PL =
c− ll

2 , and PR = c+ ll
2 , where ll represents the expected

line length.
2. There is uncertainty when one perceives the left endpoint

(σL) and the right endpoint (σR), i.e., l ∼ N(PL,σL), r ∼
N(PR,σR), where l and r represent the left and right end-
points in the stimulus. Patients might exhibit especially high
uncertainty on the left side (Figure 1b).

3. When endpoint uncertainty is high, one may have to es-
timate line lengths and midpoints from some prior expec-
tations. We model line length expectations with a gamma
distribution ll ∼ Γ(α,β), as well as midpoint expectations
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Figure 2: a) Scatter plots of parameters. The dashed lines
show the best cut-off for the corresponding measure. b) The
fitted line length prior variance in two groups. c) The line bi-
section responses and fitted line length priors of two patients.

that the midpoint tend to be at the center of the page, i.e.,
c ∼ N(0,σC).

Methods
We used the Bayesian neglect model to estimate individual
differences in data from McIntosh et al. (2017). In this study,
patients diagnosed with unilateral right hemisphere stroke (N
= 42; 12 female, 30 male; 68.64 years ± 9.76) and a healthy
control group (N = 30; 18 female, 12 male; 71.27 years ±
9.12) finished the line bisection task. Four types of lines were
created by combining endpoint locations with two different dis-
tances from the midpoint of the page: [-40, 40], [-80, 40], [-40,
80], and [-80, 80] mm (we standardized the data by treating 80
mm as 1 unit in later analysis, McElreath, 2020). We model
each individual’s data and obtain five parameters (σL, σR, α,
β, σC) for each person using RStan package in R (Stan De-
velopment Team, 2022).

Results
Stroke patients indeed exhibited higher σL than the healthy
controls (t(70) = 4.69, p < .001, Figure 2a). Meanwhile,
the difference between left-side and right-side uncertainty (i.e.
σL −σR) was larger in the stroke patients than in the healthy
controls (t(70) = 3.80, p < .001). It highly correlated (r =
0.923, Figure 2a) with the “endpoint weightings bias” mea-
sure built on linear regressions (EWB = dPR − dPL, where
c = (dPL · l)+(dPR · r)+ k, see McIntosh et al., 2005), which
is consistent with the theoretical assumption that both of them
measure the relative sensitivity on the left and right sides.
Classification We found that σL itself serves as an in-
formative indicator to classify participants from healthy con-
trols. We applied one linear algorithm (logistic regression)
and one non-linear algorithm (decision tree), and used leave-
one-participant-out cross-validation to assess accuracy. The
single σL can achieve 0.90 accuracy under logistic regression
and 0.92 under decision tree. These are higher than the re-
sult of directional bisection error (logistic regression: 0.76; de-
cision tree: 0.64) and the endpoint weightings bias (logistic

Table 1: Correlations between line bisection and other tasks.
LINES STARS COPY DRAW MULTI

DBE 0.47 0.28 0.27 0.21 0.61
EWB 0.61 0.52 0.49 0.40 0.77
σL 0.59 0.42 0.40 0.37 0.75
σL −σR 0.61 0.40 0.34 0.37 0.73

regression: 0.85; decision tree: 0.82). After adding σR, the
accuracy remained the same under both algorithms.

Correlation with other tasks Table 1 showed the correla-
tion between line bisection measures and other spatial ne-
glect tasks (see McIntosh et al., 2017, for the full description
of those tasks). The correlations of the Bayesian measure σL
or σL − σR were higher than the directional bisection error,
and similar to the endpoint weighting bias.

Expectation parameters The Bayesian neglect model pro-
vided two parameters α and β that can help examine the line
length expectations (mean and variance) participants had. In
the healthy control group, participants’ line expectations on
average were 1.48 units, which was around the average line
length across trials (1.5 units). The stroke patients’ line ex-
pectation was 1.38 units on average, shorter than that of the
healthy controls (t(70) = 2.32, p = .02). The expectation
variance was smaller in the patient group than in the healthy
control group (t(70) = 6.45, p < .001, Figure 2b). For ex-
ample, the Bayesian model identified that Patient16 had a
strong expectation that the line was short (Figure 2c). Accord-
ingly, most of their responses were close to the right endpoint.
Patient46 demonstrated a strong expectation of a medium
line length. Accordingly, their responses showed a fixed dis-
tance from the right endpoint, and many responses turned out
to be on the left side of the true middle points (Figure 2c).

Discussion
In this paper, we provide a new model to describe the per-
ceptual process in the line bisection task. The advantages of
the current Bayesian neglect model are multifaceted. Firstly,
it captures a general and intuitive representation of the per-
ceptual processes in the line bisection task, i.e., the uncer-
tainty in perceiving the left and right endpoints. Spatial neglect
could be naturally explained as greater uncertainty on the left
side, and reduced to parameters, σL or σL−σR, in our model.
We demonstrated that both measures performed well in distin-
guishing stroke patients from healthy controls. They also cor-
related better with other spatial neglect tasks than the conven-
tional directional bisection error. In addition, the Bayesian ne-
glect model naturally integrates the role of prior beliefs, which
can explain the paradoxical cross-over effect: If the patient has
a strong line length expectation and a poor ability to perceive
the left side, they would frequently mark responses that have
the same distance from the right endpoint. These responses
could be leftward under particular stimulus lengths. In sum,
the results showed the Bayesian neglect model has the po-
tential to facilitate spatial neglect studies and inform clinical
decisions.
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