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Abstract
Humans have the remarkable ability to learn new categories
from few examples, but how few examples can we actually
learn from? Recent studies suggest it may be possible to
learn more novel concepts than the number of examples.
Previous approaches to such less-than-one-shot (LO-shot)
learning used soft labels to provide weighted mappings
from each example to multiple categories. Unfortunately,
people find soft labels unintuitive and this approach did
not provide plausible, cognitively-grounded mechanisms for
LO-shot learning at scale. We propose a new paradigm
that leverages well-established learning strategies: reducing
complex stimuli to primitives, learning by discrimination,
and generalizing to novel compositions of features. We
show that participants can learn 22 categories from just 4
examples, shedding light on the mechanisms involved in
LO-shot learning. Our results provide valuable insights into
the human ability to learn many categories from limited
examples, and the strategies people employ to achieve this
impressive feat.
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compositional generalization; machine-learning

Introduction
It is well-established that humans can learn new concepts
from a few examples, but just how few can it be?
Previous research in both human and machine learning has
treated one-shot learning, where the participant must learn
a new concept from a single example, as the limit on
sample-efficiency in supervised learning settings (Tiedemann
et al., 2022; Fei-Fei et al., 2006a). Recent research in machine
learning has shown that it is theoretically possible to learn
more novel concepts than the number of presented examples,
so-called less-than-one-shot (LO-shot) learning (Sucholutsky
& Schonlau, 2021a; Sucholutskv et al., 2021), by associating
examples with “soft labels” that describe their closeness to
each concept as opposed to traditionally-used “hard labels”
which associate each example with a single concept. LO-shot
learning has recently been replicated in humans in a study
that showed that participants presented with two examples of
novel stimuli paired with soft labels relating them to three
categories could infer the structure of those three categories
(Malaviya et al., 2022). However, it remains unclear what
the limit is of LO-shot learning in humans, as well as what
mechanism or strategy actually enables us to learn in this
unexpected way.

The use of soft-labels poses a barrier to studying the limits
of LO-shot learning in humans, as well as the amount of

insight it provides into how humans learn in naturalistic
settings. Under this paradigm, participants are presented
with data that effectively corresponds to statements of the
form “this image is 60% dog, 35% wolf, 5% white fox,
and 0% horse” when shown something like a photograph
of a husky. While such statements are in theory highly
informative (Sucholutsky, Battleday, et al., 2023), they are
also highly unintuitive – it is both difficult for people to
interpret and produce them (Collins, Bhatt, et al., 2023). As
a result, previous studies have only been able to show human
generalization from a couple of soft-labeled examples to a
handful of new categories (Malaviya et al., 2022) and have
been unable to definitively pinpoint what mechanism might
underlie this kind of learning.

We approach this challenge from a different direction.
Rather than trying to recreate this phenomenon by replicating
machine-learning studies as human studies, we instead
examine the extensive literature on human cognition to
identify potential mechanisms that could enable LO-shot
learning. In particular, research in cognitive science has
shown that people are capable of reducing complex stimuli
to primitives (Tversky, 1977; Goldstone, 1998; Austerweil &
Griffiths, 2013), learning by discrimination Tversky (1977);
Kruschke (1992), aligning concepts across multiple domains
(Aho et al., 2022), and generalizing to novel compositions
of features (B. Lake et al., 2011; Zhao et al., 2023).
We combine these insights into a novel LO-shot learning
paradigm (visualized in Figure 1, where participants first
learn new visual features by discriminating between a small
set of examples labeled with feature weights, and then
learn about new categories only from textual descriptions of
their compositional structure in terms of the newly learned
features.

With this new paradigm, we can elicit much more extreme
forms of LO-shot learning in participants, with our results
showing that people can learn 22 categories from 4 examples.
Furthermore, we can probe the mechanisms that enable
people to perform this kind of LO-shot learning. In particular,
we show that people perform two different types of LO-shot
learning in sequence to achieve this level of generalization.
Participants are first able to learn 8 distinct features from the
4 examples, and they are then able to learn 22 categories from
descriptions of compositions of those 8 features.
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Figure 1: Schematic of our approach. Components within dashed lines are provided to participants. Top (blue): Participants
must first use 4 visual examples paired with dense feature weights to learn what the 8 unknown features (A-H) correspond to.
Middle (red): Participants are also presented with sparse and dense compositional information (as text) that describes each
category of aliens. Bottom (green): Participants are presented with alien images and must use all the previous information
(examples, soft weights, feature inferences, and compositional information) to classify them into the correct categories.

Background
Machine learning researchers have long sought to develop
models that could learn new classes from a few examples
per class (Wang et al., 2020) often turning to the rich
history of cognitive science research on how humans can
learn so efficiently for inspiration in designing AI systems
that generalize more effectively. One-shot learning, where
models learn new classes from just a single example of each,
has long been considered the limit for traditional supervised
learning in both machines (Fei-Fei et al., 2006b) and humans
(B. Lake et al., 2011). Recent research suggests that it may
theoretically be possible to learn more new classes than the
number of presented examples, so-called less-than-one-shot
(LO-shot) learning (Sucholutsky & Schonlau, 2021a).

There are some limited pieces of empirical evidence that
machines (Sucholutsky & Schonlau, 2021b; Sucholutskv et
al., 2021) and humans (Malaviya et al., 2022) can perform
LO-shot learning by leveraging soft labels that encode the
relationship between each example and every known class.
While people can somewhat understand and produce soft
labels, and can even use them to communicate beliefs to AI
systems (Collins, Barker, et al., 2023), they often find these
labels unintuitive and difficult to interpret even in simple
visual settings (Collins, Bhatt, et al., 2023). As a result, most
soft label studies instead rely on populations of participants
probability matching to their uncertainty levels when making
hard classifications (Peterson et al., 2019).

Theoretical investigations of soft labels have found



that they enable LO-shot learning because they contain
significantly more representational information per label than
hard labels do (Sucholutsky, Battleday, et al., 2023), meaning
fewer soft labels are required to align the learner’s internal
representations of the classes and stimuli with the teacher’s
representations. This type of representational alignment
(Sucholutsky, Muttenthaler, et al., 2023) between a teacher
and a student is closely linked with few-shot learning
performance (Sucholutsky & Griffiths, 2023) and efficient
value learning (Wynn et al., 2023). Analogous claims have
been made about concept alignment (Rane et al., 2024) as
a way to leverage prior knowledge from multiple domains
to speed up learning (Aho et al., 2022) or for a student to
efficiently learn a teacher’s values (Rane et al., 2023).

Meanwhile, people can combine primitive components
in principled ways to aid rapid generalization to new
situations (Tenenbaum et al., 2011). People tend to identify
sub-components from complex structures (Wong et al., 2022),
and make use of base concepts to form rich categories
(Piantadosi et al., 2016), learn complex new concepts
effectively from few examples (B. M. Lake et al., 2015),
and bootstrap to a diverse collection of novel concepts (Zhao
et al., 2023). In particular, many studies have pinpointed
compositionality as a key mechanism in human few-shot
(B. Lake & Baroni, 2023; Dehaene et al., 2022) and one-shot
(B. Lake et al., 2011; Zhao et al., 2022) learning.

We propose that efficient human learning relies on all three
of these mechanisms: soft labels, representational/concept
alignment, and compositional generalization. We show
that people can a) decompose a small number of complex
stimuli into a greater number of simple features and use
associated soft labels (or weights) to align those features with
familiar concepts; and b) learn to recognize an even greater
number of novel compositions of those features without
seeing additional examples.

Testing Compositional LO-shot Learning

We summarize our approach to investigating compositional
less-than-one-shot learning in people in Figure 1. Participants
are first shown a small number of example aliens with
associated soft feature weights without revealing what
characteristics those features actually correspond to (we
just call them features A-H). We use this to test whether
people can decompose the stimuli into simple features
and then use the soft weights to align these with familiar
concepts (like “number of arms”, and “height”). Participants
are then shown textual information describing how novel
compositions of these features correspond to categories,
before being asked to classify new alien images into the
categories. We use this to test whether people can learn
new categories from compositional information without ever
having seen examples from those categories. The remainder
of this section provides a more detailed explanation of our
experimental setup and lays out the results.

Methods

We tested whether people can make use of soft featural and
compositional information of T training examples to identify
K novel classes, where T < K. Specifically, we challenged
participants to learn 22 new classes from just 4 examples.

Participants 105 participants were recruited through
Prolific Academic (45 females, Mage = 40 ± 10). We
excluded 17 participants from analysis who failed to
correctly identify at least 1 out of the 4 learning examples,
leaving us 88 participants in total. Participants were paid
six dollars for their time. The task took 36 ± 31 minutes.
The experiment was performed with IRB approval. All
participants gave informed consent before undertaking the
experiment. An anonymous pre-registration is available here.

Material We designed 22 alien creatures in total (Table 1).
Each alien creature is defined by eight features: antenna
length (Feature A, ranging from 0 to 30mm), body width
(Feature B, 20–70mm), body height (Feature C, 20–70mm),
color (Feature D; i.e., proportion of blue pigment of the skin,
RGB(0,0,255) to RGB(255,0,0)), number of eyes (Feature E,
0–10), number of arms (Feature F, 0–10), number of legs
(Feature G, 0–5), and arm length (Feature H, 0–30mm). The
4 training examples are shown in the top panel in Figure 1.
Aliens 5 to 10 are homogeneous across features—“all
features are X”—where aliens 5 and 6 test extrapolation of
extreme feature values (lowest/highest possible value of each
feature), and aliens 7–10 test interpolation; aliens 11–14 are
like training aliens 1–4 but each with 2 features modified
to be in the extrapolation region (the modified features
are underlined in Table 1); aliens 15–18 are like training
aliens 1–4 but each with 2 features modified to be in the
interpolation region (the modified features are underlined in
Table 1); aliens 19–22 are like 11–18 but instead of having
both modified features be extra/interpolation, they have one
feature in extrapolation and one in interpolation (the modified
features are underlined in Table 1).

To convert proportions to exact feature values, let x,y be
the minimal and maximal feature values and p the proportion,
the values used in the stimuli are computed as x+ p× (y−x).
To translate the color feature to RGB, we kept G to be 0
throughout, set R to 255− 255× p, and B to 255× p. Note
that we only used feature labels A to H in the experiment,
and participants had to infer the mappings between these
uninformative labels with the visualized features.

There are two ways we communicated soft labels to
participants. One is the compact description that compares
a new alien to a known one, for example, “Alien 11 is very
similar to Alien 1 but with high Feature E and low Feature
F”. Another is the detailed description that lists a percentage
(0 to 100) corresponding to how strongly that alien exhibits
that feature, in tabular formats.

https://aspredicted.org/ZMH_DZ7


Table 1: Soft information for the aliens participants
categorized in the experiment. Aliens 1-4 are examples.
Underlined values are mentioned in the compact descriptions.

Alien A B C D E F G H

1 0.8 0 0.5 0.2 0.2 0.7 0.2 0.8
2 0.2 1 1 0.2 0.3 0.6 0.2 0.2
3 0.8 0.66 0 0.8 0.7 0.5 0.8 0.2
4 0.2 0.33 1 0.4 0.8 0.4 0.8 0.8
5 0 0 0 0 0 0 0 0
6 1 1 1 1 1 1 1 1
7 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
8 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

10 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
11 0.8 0 0.5 0.2 0.9 0.1 0.2 0.8
12 1 1 0.25 0.2 0.3 0.6 0.2 0.2
13 0.8 0.66 0 0 0.7 1 0.8 0.2
14 0 0.33 1 1 0.8 0.4 0.8 0.8
15 0.8 0.4 0.5 0.2 0.2 0.5 0.2 0.8
16 0.2 1 0.5 0.5 0.3 0.6 0.2 0.2
17 0.8 0.66 0 0.8 0.4 0.5 0.8 0.6
18 0.5 0.33 1 0.4 0.8 0.4 0.4 0.8
19 0.8 0.5 0.5 0.2 0.2 0 0.2 0.8
20 1 1 1 0.2 0 0.6 0.2 0.2
21 0.8 0.66 0 0 0.7 0.5 0.6 0.2
22 0.2 0.33 0.5 0.4 0.8 0.4 0.8 0.1

Design and procedure We manipulated whether
participants had the chance to learn soft featural and
compositional information (yes for the experimental group,
and no for the control group), and the order in which
participants receive compact or detailed descriptions first
in the test phase. These manipulations led to 2 × 2 = 4
between-subject conditions. After giving informed consent,
participants were told that they were explorers to the
wonderful world of Parvelor, and we needed their help to
classify the many quirky creatures on the planet. Participants
were then shown a field guide with 3 sections.

In Section 1, participants in the experimental group saw the
four example aliens (Figure 1 top) with corresponding soft
feature information (Table 1 – first four rows) summarized
in a table. Participants in the control group saw the same
four example aliens, but without soft feature information.
In Section 2, all participants had access to text descriptions
of aliens 5–22. Aliens 5–10 were always presented in the
compact format. For participants in the compact-first group,
they saw aliens 11–16 in the compact format and aliens 17–22
in the detailed format, and vice versa for participants in the
detailed-first condition. Then in Section 3, participants were
asked to pick a short description of what they think each
feature corresponds to, and provided answers by selecting
from a drop-down menu with the eight features and one

Figure 2: Interface for categorizing new aliens. Participants
can drag images in the stack on the left to corresponding
labels on the right. There were 22 alien images and 22 labels.

distractor (position of the eyes). After that, participants were
shown all 22 aliens (4 examples and 18 tests) in random
order and categorized them by dragging an alien image to
the corresponding label (Figure 2). Participants had access to
their field journal, i.e., the training aliens, descriptions of the
test aliens, and the feature mapping they created themselves,
at all times. The experiment finished with a short debriefing
and feedback form.

Results
We analyze how well people categorized the new aliens
as a function of the two factors we manipulated: learning
soft labels (exp group) or not (control group), and seeing
test alien descriptions in compact-first or detailed-first
orders. Test accuracy is defined as the number of
correct categorizations a participant made divided by
the total number of categorizations. We also examine how
performance in the feature learning phase predicts test
accuracy.

Participants use soft information to identify more novel
categories. As illustrated in Figure 3a, participants with
soft information achieved overall test accuracy of 0.7± 0.3,
significantly higher than the average accuracy of 0.4 ± 0.3
in the control group (t(83.2) = 5.4, p < .001, 90% CI =
[0.2,0.4], Cohen’s d = 1.28). Breaking down the test aliens
by different types, participants in both the experimental
and control groups achieved similar level of accuracy when
categorizing the four learning examples during test phase
(Mexp = 0.8± 0.2, Mcontrol = 0.8± 0.2, t(84.7) = 0.1, p =
.89), serving as a sanity check that the control group paid
attention to the task and were not making purely random
choices (Figure 3b).

Participants with soft feature information identified more
aliens correctly for each other type of the classification
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Figure 3: Accuracy categorizing alien creatures. (a) For all
22 alien creatures. (b) For the learned examples. (c) For
new aliens with homogeneous features. (d) For new aliens
with compact descriptions. (e) For new aliens with detailed
descriptions.

task (Figures 3c-e): test aliens with homogeneous features
(Mexp = 0.7 ± 0.4, Mcontrol = 0.4 ± 0.4, t(84.9) = 3.9,
p < .001, 90% CI = [0.2,0.5], Cohen’s d = 0.8), test
aliens described in compact formats (Mexp = 0.6 ± 0.4,
Mcontrol = 0.1 ± 0.3, t(78.6) = 6.6, p < .001,
90% CI = [0.3,0.6], Cohen’s d = 1.7), and test aliens
described using detailed feature tables (Mexp = 0.6 ± 0.4,
Mcontrol = 0.2 ± 0.3, t(82.5) = 5.4, p < .001,
90% CI = [0.3,0.5], Cohen’s d = 1.3). Overall, this is
strong evidence that with the help of soft information people
can identify more novel categories than the number of
learning examples when given compositional instructions.

Participants learn equally well with compact and
detailed descriptions. We did not find the compact-first or
detailed-first manipulation to be a significant predictor of test
accuracy (Mcompact-first = 0.5± 0.3, Mdetailed-first = 0.5± 0.3,
t(84.2) = 0.1, p = .88). Focusing on the groups of
aliens that were described in compact or detailed formats,
there are no significant differences between test accuracy
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Figure 4: Performance on learning features from soft labels
predicts test classification accuracy.

(Mcompact = 0.4±0.4, Mdetailed = 0.4±0.4, t(173.6) =−0.9,
p = .36). This holds for both participants in the experimental
group (Mcompact = 0.6 ± 0.4, Mdetailed = 0.6 ± 0.4,
t(41.2) = 1.2, p = .2), and participants in the control
(Mcompact = 0.1± 0.3, Mdetailed = 0.2± 0.3, t(85.9) = −0.2,
p = .8). These results suggest that how soft information
is presented has little impact on how well people use this
information in categorizing new observations.

Implicit soft information for the control group
Although participants in the control group achieved
lower test accuracy for almost all the test aliens, their
overall test accuracy is significantly above chance
(χ2(17) = 62.6, p < 0.001). In particular, test accuracy
for aliens 1–6 (with homogeneous features) in the
control group is significantly higher than for aliens 7–18
(Mhomog. = 0.4 ± 0.4, Mcontrol = 0.2 ± 0.3, t(76.4) = 3.5,
p < .001, 90% CI = [0.1,0.4], Cohen’s d = 0.9). This
implies that people may be sensitive to the feature space
and feature strengths, and can make efficient use of such
information to navigate through hard categorization tasks.

Mastering soft labels improves performance in
categorization. Participants in the experimental group
took a longer time completing the task (Mexp = 45±19 min,
Mcontrol = 34 ± 42 min, t(43) = −5.3, p < .001,
95% CI = [−46,−20], Cohen’s d > 10). On average,
participants in the experimental group achieved 0.8 ± 0.2
accuracy in identifying the feature mappings, and this
performance is a significant predictor of test accuracy
(F(1,42) = 93.2, β = 1.27, p < .001), in addition to
explaining 68.9% of the variance (Figure 4). This further
confirms that people are making effective use of soft
information in compositional generalizations.



Conclusion
People use features compositionally to represent categories,
and this helps us to learn novel categories even without
having encountered their category members. Extending
previous work in learning with soft labels with compositional
generalization, we showed that people can indeed learn 22
new categories from just 4 examples by using soft featural
information compositionally. In fact, people are good at using
such information with either compact or detailed formats, and
exhibit a strong positive correlation between how well they
learn the soft featural information and how good they are at
identifying new categories compositionally. Taken together,
these results provide a novel perspective on how people learn
so much despite their limited experience in the world: being
able to extract features and combine them compositionally to
create new concepts is a rapid way to learn from limited data.
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