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Abstract

People effectively reuse previously learned concepts to
construct more complex concepts, and sometimes this
can lead to systematically different beliefs when the same
evidence is processed in different orders. We model
these phenomena with a novel Bayesian concept learn-
ing framework that incorporates adaptor grammars to en-
able a dynamic concept library that is enriched over time,
allowing for caching and later reusing elements of ear-
lier insights in a principled way. Our model accounts for
unique curriculum-order and conceptual garden-pathing
effects in compositional causal generalization that alter-
native models fail to capture: While people can success-
fully acquire a complex causal concept when they have an
opportunity to cache a key sub-concept, simply reversing
the presentation order of the same learning examples in-
duces dramatic failures, and leads people to complex and
ad hoc concepts. This work provides an explanation for
why information selection alone is not enough to teach
complex concepts, and offers a computational account
of how past experiences shape future conceptual discov-
eries.
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Introduction

People have a remarkable ability to develop rich and com-
plex causal concepts despite our limited cognitive capacities
(Griffiths, Lieder, & Goodman, 2015; Newell & Simon, 1972).
We achieve this, partly, by effectively re-using, re-combining,
or re-purposing existing knowledge (Gobet et al., 2001). This
ability to bootstrap enables us to grow rich mental concepts in-
crementally that go beyond our limited cognitive resources—
indeed, this is taken to be a cornerstone of cognitive de-
velopment (Carey, 2004). Crucially, a model of conceptual
bootstrapping posits learning not as optimal summarization of
the environment, but as inherently and fundamentally path-
and knowledge-dependent: Successful search for a complex
causal concept is heavily reliant on having good, previously-
learned abstractions (Dechter, Malmaud, Adams, & Tenen-
baum, 2013; Gelpi, Prystawski, Lucas, & Buchsbaum, 2020).

Zhao, Bramley, and Lucas (2022) proposed a computa-
tional model of conceptual bootstrapping that attempts to
formalize this crucial human learning ability in a Bayesian-
symbolic concept learning framework. This is an algorithmic-
level model of the computational problem of human con-
cept discovery. Drawing on combinatory logic and adaptor
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Figure 1: A. Visualization of the computational model. B. Ex-
ample curriculum and corresponding model predictions.

grammars (Liang, Jordan, & Klein, 2010), this model imple-
ments a dynamic concept library that can cache sub-concepts
and therefore later reuse them to construct more complex
concepts (Fig. 1A). This model predicts conceptual garden-
pathing and curriculum-order effects, such that processing the
same information in different orders leads to different learned
concepts, as a result of different sub-concepts acquired in
the process of learning. We further test the validity of this
model by conducting replicating and follow-up experiments,
and comparing the original model with several alternatives.

Methods
Experiments

Zhao et al. (2022) tested causal concept learning using an-
imated geometric objects called a causal agent (A), recipi-
ent (R), and result (R’). An agent object A has stripes and
spots on it, and a recipient object R is composed of sev-
eral segments (Fig. 1B, shaded panels). When A touches
R, A can change the number of segments on R to change,
bringing the result R’ (Fig. 1B, white panels). Zhao et al.
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Figure 2: A. Model fit (total log likelihood) improvement over random baseline (y=0), log scale. B. Generalization accuracy per
curriculum and phase. X-axis are model predictions, y-axis people’s. C. Generalization accuracy between people (black bars)

and four Bayesian-symbolic models.

(2022) tested causal concept R’ = stripe(A) x R—spot(A).
Here, we replicated this experiment reported by swapping the
causal roles attached to the stripe and spot features, i.e.,
R = spot(A) X R—stripe(A).

Zhao et al. (2022) manipulated three curricula, each con-
sisting of two phases. Curriculum construct presents R’ =
stripe(A) X Rin Phase | (Fig. 1B, solid-border box), and then
information about the compound concept in Phase Il (Fig. 1B,
dashed-border box). Curriculum de-construct reverses Phase
I and Il as in construct. Curriculum combine shares the same
Phase | as in construct, but in Phase Il kept stripe(A) =1
throughout, making it ambiguous how stripe(A4) x R and
- — spot(A) should be combined. We further included a flip
curriculum that swaps the two phases of combine to explic-
itly test how people do this. We tested both the causal func-
tion in Zhao et al. (2022) and its replication in these experi-
ments. Participants watched animated object interactions dur-
ing training, and then made predictions on eight novel (A, R)
in random order, once after Phase | and once after Phase II.

Models

We compared the model reported in Zhao et al. (2022) and
several alternatives. To account for the fact that people may
be revisiting Phase | after seeing Phase I, as allowed by the
experiment interface, we considered an extended model we
call AGR—Adaptor Grammar with Re-processing—that mixes
predictions y_, from Phase | to Il, and predictions §. from
Phase Il to I, with a weight parameter A € [0,1]. We also
tested a “rational rules” model (RR) based on Goodman,
Tenenbaum, Feldman, and Giriffiths (2008), assuming the
same conceptual primitives as the adaptor grammar models.
Model RR uses a fixed set of primitives, rather than the dy-
namic concept library as in the AG or AGR models. Since
we evaluate models using generalization predictions, we also
implemented several sub-symbolic models capable of gener-
alization but not explicit rule guesses: A similarity-based cat-
egorization model (Tversky, 1977), a linear regression model
(LinReg), a multinomial regression model (Multinom) and a
Gaussian process regression (GpReg) model with radial ba-

sis function kernels one per feature. We made predictions
about the novel object pairs using fitted models, and evalu-
ated model predictions with their log-likelihood LL of produc-
ing participants’ predictions. The baseline model is random
selection (rand).

Results and Discussion

Since the feature-counterbalancing did not interfere with
the main behavioral results, we collapsed across these in
analysis. As shown in Fig. 2A, model AGR achieves the
greatest improvement of fit over baseline, with the three
Bayesian-symbolic models (AGR, AG, RR) easily outperform-
ing similarity-based or regression models. With fitted model
parameters, Fig. 2B plots generalization accuracy in each
phase for each curriculum between model and people. Again,
AGR best predicts people’s performance across all cases, and
the non-symbolic models fail to match people’s predictions.

Fig. 2C plotted average accuracy achieved by human par-
ticipants in black bars. The difference in Phase Il accuracy
between the construct and de-construct curricula revealed
strong curriculum-order and conceptual garden-pathing ef-
fects. Model RR fails to reproduce such effects, because this
model is likely to have figured ground truth after seeing all the
data, even for the de-construct curriculum, and thus deviating
from how people process phases of information. Model AG,
on the other hand, is defeated by the learning trap as many
people were, exhibiting no accuracy improvement in Phase |l
relative to Phase I. Model AGR mixes model AG with some re-
processing, and is therefore able to capture participants’ mod-
est improvement in de-construct Phase Il generalizations.

Overall, these results suggest that curriculum-order and
conceptual garden-pathing effects exhibited by people can be
explained as consequences of a cache-and-reuse mechanism
expanding the reach of a bounded learning system. Criti-
cally, these phenomena cannot be explained by a standard
Bayesian-symbolic model out of the box, or by familiar sub-
symbolic categorization models, showcasing that a cache-
and-reuse mechanism is central to human-like inductive in-
ference to compositional concepts.
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