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Abstract

In combinatorial innovation, people face the decision problem of when to invest in
new development, and when to stick with the currently best option. Zhao, Vélez,
and Griffiths (2024) showed that under finite horizon, this equates to an optimal
stopping problem, and provided analytical solutions. Interestingly, in behavioral
experiments, while people’s decisions aligned with the rational solutions overall,
there were also systematic deviations. Here, we examine two heuristic models to
this optimal stopping problem in combinatorial innovation. Our approach assumes
that agents make decisions by running mental simulations that integrate prior
beliefs and past observations. We show that these models well-capture various
patterns in empirical data, suggesting that people may rely on simple heuristics to
make fast decisions when solving computational problems involving sophisticated
combinatorics. We also investigate whether Large Language Models (LLMs) can
be used as a cognitive model to study these processes, report preliminary findings
of LLM’s limitation in this task, but suggest that chain of thought prompting may
help mitigate these limitations.

1 Introduction

Innovation often comes from recombination of previous technologies. This leads to an intriguing
observation: As the technology level goes up, the opportunity cost of developing a new technology
grows higher, and the space of existing technologies to attempt combination with increases rapidly.
Knowing when to stop exploring new opportunities thus is as important as achieving one’s original
goal, as over-persistence can waste time and resources [1, 5, 6]

Zhao, Vélez, and Griffiths (2024) formalized this problem in a combinatorial discovery game. As a
sequential decision-making task between “innovate or not” under finite horizon, they showed that
this forms an optimal stopping problem [7, 11] and offered an analytical solution. Interestingly, in
behavioral experiments, although participants showed good intuitions about following a stopping
rule, their stopping points varied compared to the rational solutions. Previous work has found out
that participants often deviate from rational solutions, persisting with suboptimal strategies longer
than necessary [4, 13, 14], and do so even when presented with the optimal strategy [13]. Moreover,
participants’ performance did not improve over the course of time [10, 12]. These patterns, however,
may be subject to training. For instance, Goldstein et al. (2020) observed significant learning leading
to near-optimal stopping behavior in a repeated secretary problem.

To better understand the cognitive processes underlying optimal stopping, we explore several heuristic
models to the computational problem in combinatorial innovation, drawing upon Bayesian inference
and mental simulations. We also compare Large Language Models (LLMs) as agents to solve the
same task. To foreshadow, the heuristic models well-capture many aspects of the behavioral data,
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implying a converging process to optimum, and LLMs struggle to make either human-like predictions
or the rational solutions.

2 Modeling optimal stopping

2.1 Task and problem

In the discovery game defined by Zhao, Vélez, and Griffiths (2024), participants can either gain
rewards from an existing item (extraction) or combine two items to create a new item with potentially
higher rewards (fusion). Each game is parameterized by the probability of success (p) and the reward
increase rate (w). This setup forms a Markov decision process. Under finite horizon, the optimal
policy is to keep doing fusion until a switching point d, after which keeps extracting the item with
highest rewards. The expected reward for switching at step d is

Eπ(d) = (n− d)

(
d∑

i=0

(
d

i

)
(pw)i(1− p)d−i

)
r. (1)

Let the “remaining step” d′ := D − d+ 1, Equation 1 states that

d′ ≥ 1

p(w − 1)
+ 1. (2)

In an online behavioral experiment [16], 210 participants were randomly assigned to one of the four
conditions based on two parameters: p ∈ {0.8, 0.2} and w ∈ {3, 1.5}. The conditions included high
p (= 0.8) with high w (= 3), high p with low w (= 1.5), low p (= 0.2) with high w, and low p with
low w. Each participant completed 9 tasks–2 practice and 7 official. Each task consisted 10 steps. At
each step, participants could choose to either fuse or extract. All participants were informed of the
relevant parameter values in the official tasks but not in the practice rounds.

Overall most participants followed a “switch-once” strategy as proposed by the rational model.
However, the choice of switching points did not align perfectly. In the high-p-high-w, high-p-low-w,
and low-p-high-w conditions, many participants exhibited under-exploration, switching too early;
whereas those in the low-p-low-w condition showed over-exploration, switching too late compared to
the predicted switch point in Equation 2. The most common switch points for the high-p-high-w and
low-p-low-w conditions coincided with the optimal switching point (step 9 and step 0, respectively),
yet only 32% and 18% of participants in these conditions switched at the optimal point. In contrast,
the most common switch points for the high-p-low-w, and low-p-high-w conditions did not align
with the optimal switching point (step 7), instead being distributed evenly around the optimum.

2.2 Bayesian heuristic models

Solving the combinatorics in Equation 1 can be challenging for a bounded agent. Here, we treat
participants as Bayesian learners, updating their switch point decisions based on the previous round’s
reward and fusion feedback information. That is, we assume the player indeed switch once from
fusion to extraction in the game, but the switch step is drawn from a distribution P (d), d ∈ [0, 10].

Prior We use the practice round data to estimate the priors people brought into the official tasks,
and approximate that empirical practice round distribution using a weighted combination of a uniform
prior dU ∼ Unif(0, 10) and and a Gaussian prior dN ∼ N (µ, σ), where µ takes the value of the
average switch step of the first practice round for each condition and σ = |D|−1

4 . Next, we use
hyperparameter q ∈ [0, 1] to control the relative contributions of the Gaussian and uniform priors
using Equation 3, and the optimal value of q is fitted using Kullback-Leibler against the respective
practice round data:

P (d) = q ∗ P (dU ) + (1− q) ∗ P (dN ). (3)

The simulated prior and people’s first practice round distributions are plotted in Appendix A.1. Note
that people might adapt different exploratory and exploitative strategies in the practice rounds, and
we report those analysis in Appendix A.1.
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Likelihoods. In task i, the player chooses a switch step di ∼ Pi(d), and follows a policy that fuses
for the first di steps and then extracts until the end. After this round of the game, the player observes
total reward Ri and the total number of successes k for this round. Then, the player could estimate
the amount of Ri+1,d′ if switching at step d′ for the next round of the game:

P (R|d′) = Ri+1,d′ = r × wk × (10− d′). (4)

We consider two ways (belief update systems) of estimating the expected rewards for the next rounds
of the game.

Belief Update System 1 assumes agents lack predictive knowledge about rewards beyond the switch
step, expecting post-switch rewards to match those on the switch step. For example, if an agent
switches on step 6 after receiving 10 points, they expect earning 10 points on subsequent step. The
expected rewards of switching before step 6 were calculated using the reward function in Equation 4.

Belief Update System 2 assumes that agents estimate a fixed number of successful fusions (s = 2 or
8) out of 10 steps, rather than evaluating each step’s success probability. If an agent switches at step
d and encounters z successful fusions (z < s), they mentally simulate s− z successful fusions for
the remaining steps (d+ 1 to 10). If z ≥ s, they assume no further successes will occur.

Bayesian update Putting these together, the agent estimates an updated switching point distribution
following Bayes’ rule:

P (d̂|observation) =
P (R|d)P (d)∑

d′∈D P (R|d)P (d)
, (5)

where d ∈ D = {0, 1, · · ·, 10} representing the possible switch points, R is the estimated reward
switching at step d. For task 2 to task 7, each prior is the posterior from the the previous task,

Pj(d) = Pj−1(d̂|observation), 1 < j ≤ 7 (6)

Finally, a switch point is sampled from this posterior via applying a softmax function:

σ(Pj)d =
ePj,d/τ∑10
d=0 e

Pj,d/τ
, (7)

where τ is the temperature parameter that we later fit with empirical data.

2.3 Results

We compare the two heuristic models, Belief Update System 1 and 2, to the rational model in
Equation 2 in capturing participants’ decisions in this optimal stopping problem. We ran 50 batches
of 10,000 simulations and reported the mean results after fitting the softmax function (Equation 7).
To include the rational model in the comparison, we applied Equation 7 to a one-hot encoder with
the optimal switch point being 1 and all other steps being 0. Data and code are openly available at
[17]. While the rational model is only able to predict a single optimal switch point, the two heuristic
models provide a better account for the general shape of the empirical switch point distributions
found in people. As shown in Figure 1a, both heuristic models accurately capture the left-skewed
distribution for high-p-high-w (HH), high-p-low-w (HL), and low-p-high-w (LH) condition and the
normal distribution shape but with a highest bar at step 0 for the low-p-low-w conditions (LL).

Comparing the two Belief Update Systems, we find that Belief Update System 2 performs better in
the HH condition, accurately predicting the most common switching point (step 9) However, Belief
Update System 2 deviates from the most common switching point by one step (step 8). In the HL
and LH conditions, both Belief Update Systems perform similarly, predicting the most common
switching point as step 7 and step 6, respectively, very clost to most common switching point favored
by participants (step 6 and step 5). For the low-p-low-w (LL) condition, Belief Update System 1
performs better, capturing the highest bar at step 0 and the second highest bar in the middle (step
5). Evaluating the models using with the Bayesian Information Criterion (BIC) also confirms these
observations (Appendix A.2).
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Figure 1: Histogram of participants’ (black bar) and Bayesian Learners’ (colored dots) switch steps.
Starts are the rational switch steps.

3 LLM agents

We now examine Large Language Models (LLMs) as simulated participants in the same combinatorial
discovery game. We first prompted GPT (“gpt-3.5-turbo” and “gpt-4-turbo”) and Llama (“meta-
llama/Llama-3.1-70B-Instruct”) models with the discovery game tasks with the same setup (Direct
Play), and in addition chain-of-thought prompting (COT) [3, 15]. Examples of each prompt type are
provided in Appendix A.3.1.

3.1 Direct Play

For Direct Play, our results revealed a striking difference between people’s and LLM models’ behavior
(Figure 2). While about 80% participants switched only once per task [16], GPT-3.5 agents frequently
switched multiple times across conditions (switch-once proportions: HH: 71.4%; HL: 14.3%; LH:
57.1%; LL: 28.6%). In contrast, GPT-4.0 and Llama-3.1 largely adhered to a switch-once strategy, the
switch step pattern differed substantially from human participants (see Figure 4 in Appendix A.3.4).
In conditions where people typically under-explored (HH, HL, LH), LLMs under-explored even
more. For HH, GPT-4.0 and Llama-3.1 most commonly switched at step 5, under-exploring by 4
steps, while 32% of participants switched at the optimal step 9. In HL, GPT-4.0 stopped at step 5
(2 steps early) and Llama-3.1 at step 6 (1 step early). In LH, GPT-4.0 switched one step early (at
step 6), while Llama-3.1 stopped at step 2, under-exploring by 5 steps. Conversely, in LL, where
optimal switching is at step 0, both LLMs over-explored: GPT-4.0 switched at step 5 (5 steps late)
and Llama-3.1 at step 3 (3 steps late), while 18% of participants switched optimally at step 0.

3.2 Chain-of-thought prompting

We tested two variations of the chain-of-thought prompting: (1) explicitly informing the LLMs of the
rational model in Equation 2 with an example optimal play (MDP), and (2) in addition to providing
the equation and example optimal play, further asking the LLMs to explain why the example play is
optimal (COT). For instance, COT prompts included explanations such as: “At this early stage, we
want to attempt fusions to maximize future point potential. By fusing a and b, we create a new crystal
worth 450 points, which can be used in future fusions,” or “The optimal action is still fusion. Even
though it only succeeds 2 out of 10 times, each new crystal discovered is worth three times more than
the previous one!”

Our results showed that providing additional explanations through COT prompting significantly
outperformed using only rational solutions and example of optimal plays (MDP). This suggests that
mathematical solutions alone (MDP) are insufficient for LLMs to determine the optimal switch point
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Figure 2: Heatmap showing the average frequency of fusion attempts at each step over seven rounds
for LLM agents (GPT-3.5, GPT-4, and Llama-3.1-70B-Instruct) using three different prompting
methods (Direct Play, MDP Prompt, COT Prompt) and participants [16]. The rational switch steps
are indicated by stars, with the highest fusion rate matching the optimal switching point circled in
yellow. The best-performing prompting methods for each model are highlighted in yellow.

from fusion to extraction; reasoning prompts (COT) are necessary to help agents make more rational
choices. COT prompting effectively guided the models to switch from fusion to extraction at the
optimal point. Comparing to the rational model (see Figure 2), for the HH condition, GPT-3.5 with
COT prompting has the highest fusion rate at the optimal switching point (step 9); for HL and LH
condition, Llama-3.1 with COT prompting have the highest fusion rate at the optimal switching
point (step 7); for the LL condition, both MDP and COT prompting led LLMs to maintain extraction
throughout all 10 steps, aligning with the rational model’s prediction in Equation 2. However, unlike
participants who progressively approach the optimal point, LLMs with COT and MDP prompt
typically switch optimally or near-optimally from the start of tasks and deviate over time, implying a
lack of ongoing learning (see Figure 5 in Appendix A.3.4).

4 Discussion

Finding the optimal stopping point in large combinatorial spaces is challenging to people. Our
heuristic models impute assumptions about approximating the optimal solution task-by-task via
simple update, and better capture the empirical distributions than the rational model. Moving forward,
we hope to develop interventions that encourage people to be more rational in similar settings inspired
by the heuristic models. Testing the same experiments with GPT and Llama models revealed that
LLM agents may approach the task differently from people. In Direct Play, LLMs struggled to
identify the optimal strategy of switching once per task, often continuing to attempt fusions at the
same level, wasting opportunities for higher rewards. With chain-of-thought (COT) prompting, LLMs
learn the optimal strategy more effectively, including switching from fusion to extraction at the right
moment and consistently extracting or fusing the highest-value crystals. While COT prompting
helps LLMs achieve optimal solutions, their approach lacks the gradual adaptation seen in human
learning. This suggests further research is needed to assess LLMs’ viability as cognitive models,
especially examining how COT improves LLMs’ mathematical reasoning and its alignment with
human cognition.

5



References
[1] L. Alaoui and C. Fons-Rosen. “Know when to fold’em: The flip side of grit”. In: European

Economic Review 136 (2021), p. 103736.

[2] J. R. Anderson. The Adaptive Character of Thought. Hillsdale, NJ: Erlbaum, 1990.

[3] G. Bao et al. “LLMs with Chain-of-Thought are Non-Causal Reasoners”. In: arXiv preprint
arXiv:2402.16048 (2024).

[4] C. Baumann et al. “A linear threshold model for optimal stopping behavior”. In: PNAS 117.23
(2020), pp. 12750–12755. DOI: insertDOIhere.

[5] D. Bergemann and U. Hege. “The financing of innovation: Learning and stopping”. In: RAND
Journal of Economics (2005), pp. 719–752.

[6] R. Choi, M. Lévesque, and D. Shepherd. “An Optimal Stopping Model for the Exploration
and Exploitation of a New Business Opportunity”. In: Creating Value: Winners in the New
Business Environment. 2017, pp. 127–143.

[7] T. S. Ferguson. Optimal stopping and applications. 2006. URL: https://www.math.ucla.
edu/~tom/Stopping/Contents.html.

[8] D. G. Goldstein et al. “Learning when to stop searching”. In: Management Science 66.3 (2020),
pp. 1375–1394.

[9] T.L. Griffiths, F. Lieder, and N.D. Goodman. “Rational use of cognitive resources: Levels of
analysis”. In: Topics in Cognitive Science 7 (2015), pp. 217–229. DOI: 10.1111/tops.12142.

[10] M. Guan and M. D. Lee. “The effect of goals and environments on human performance in
optimal stopping problems”. In: Decision 5.4 (2018), p. 339. DOI: insertDOIhere.

[11] T. P. Hill. “Knowing when to stop: How to gamble if you must-the mathematics of optimal
stopping”. In: American Scientist 97.2 (2009), pp. 126–133.

[12] M. D. Lee and S. Chong. “Strategies people use buying airline tickets: a cognitive modeling
analysis of optimal stopping in a changing environment”. In: Experimental Economics (2024).
DOI: 10.1007/s10683-024-09832-2.

[13] H. Singmann et al. “Full-Information Optimal-Stopping Problems: Providing People with the
Optimal Policy Does not Improve Performance”. In: Proceedings of the Annual Meeting of the
Cognitive Science Society. Vol. 46. 2024.

[14] N. Sukhov et al. When to Keep Trying and When to Let Go: Benchmarking Optimal Quitting.
2023. DOI: https://doi.org/10.31234/osf.io/gjucy.

[15] J. Wei et al. “Chain of thought prompting elicits reasoning in large language models”. In:
Advances in Neural Information Processing Systems. Vol. 35. 2022, pp. 24824–24837.

[16] B. Zhao, N. Vélez, and T. Griffiths. “A Rational Model of Innovation by Recombination”. In:
Proceedings of the Annual Meeting of the Cognitive Science Society. Vol. 46. 2024.

[17] B. Zhao and F.E. Zhang. Innovation game. 2024. URL: https://osf.io/8gwpv/.

A Supplemental material

A.1 Simulated prior distribution

Initially, we consider two prior distributions to model agent’ initial switch point preference: an
Uniform prior dU ∼ Unif(0, 10) representing agents with no initial preference and a Gaussian prior
dN ∼ N (µ, σ) which favors a specific initial switch point. However, instead of directly applying
these distributions as the model prior, we draw inspiration from the human practice round distribution
to understand when people tend to switch from fusion to extraction at the beginning of the discovery
game. We hypothesize that some individuals may prefer to switch randomly at first to gauge the
potential gains, while others may balance exploration and exploitation by choosing a middle point.
To capture this idea, we introduce a hyperparameter q ∈ [0, 1] that weights the contributions of the
uniform and Gaussian priors. We use Kullback-Leibler divergence to find the optimal q that best fits
the practice rounds data, as described in Equation 3. The results of this process are visualized in
Figure 3, which plots the practice round 1 data alongside the simulated distribution based on this data.

6

https://doi.org/insert DOI here
https://www.math.ucla.edu/~tom/Stopping/Contents.html
https://www.math.ucla.edu/~tom/Stopping/Contents.html
https://doi.org/10.1111/tops.12142
https://doi.org/insert DOI here
https://doi.org/10.1007/s10683-024-09832-2
https://doi.org/https://doi.org/10.31234/osf.io/gjucy
https://osf.io/8gwpv/


Figure 3: First practice round distribution and the simulated distribution with the optimal q value
(qhh = 0, qhl = 1, qlh = 0.192, qll = 0.495)

A.2 BIC score table

Using the rational model (Equation 2) as the baseline after fitting a softmax function (Equation 7),
we compute the Bayesian Information Criterion (BIC) for each model. The results are shown in
Table 1, which summarizes the BIC improvements of each heuristic model over the rational model.
The results show that the heuristic models outperform the rational model in all conditions except for
Belief Update System 2 in the LL condition. Belief Update System 1 slightly performs best against
the rational model in the all four conditions.

Model HH HL LH LL
Belief 1 10.851 4.368 14.782 0.978
Belief 2 10.348 4.309 12.966 -7.336

Table 1: BIC improvements of heuristic models over the baseline rational model

A.3 Large Language Model

A.3.1 LLM Direct Play prompt

We used the OpenAI Completions API to engage GPT-turbo-3.5 and GPT-turbo-4.0 and Hugging
Face Completion API to enage meta-llama/Llama-3.1-70B-Instruct in the combinatorial discovery
game defined by Zhao, Vélez, and Griffiths (2024). Below is an example of the game prompt for
the high-p-high-w condition, which includes the game rules and a sample play for one task. For
high-p-low-w, low-p-high-w, and low-p-low-w conditions, the parameters p, w, and the base reward
is changed based based on the same empirical experiment setup. For high-p-low-w: fusion will work
8 out of 10 times; each new crystal discovered is worth 1.5 times more points than the most valuable
crystal used to produce it; initially each crystal is worth 150 points. For low-p-high-w: fusion will
work 2 out of 10 times; each new crystal discovered is worth 3 times more points than the most
valuable crystal used to produce it; initially each crystal is worth 150 points. For low-p-low-w: fusion
will work 2 out of 10 times; each new crystal discovered is worth 1.5 times more points than the most
valuable crystal used to produce it; initially each crystal is worth 1 point. The game description and
the example play are modified based on the condition.
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Game Description

You are participating in a psychology experiment. In the experiment, you collect points from
some alien crystals using a special machine. A production team will continuously supply you
with those crystals, ensuring you have as many as you need. Your ultimate goal is to maximize
the points you collect from these crystals.

The experiment has seven rounds. In each round, you are given 6 crystals: crystal a, crystal b,
crystal c, crystal d, crystal e, crystal f. Initially each crystal is worth 500 points.

In each round, you can either <Extract> or <Fuse> the alien crystals:
• You can collect points from a crystal with<Extract>. For example, <Extract> a gives

you 500 points.
• You can discover new crystals by combining existing ones using <Fuse>, for example,

<Fuse> a and b. Fusion may result in a new, more valuable crystal or it may fail,
causing you to lose the opportunity to extract points from known crystals. The newly
discovered crystals will be available for you to further <Extract> or <Fuse>. You will
not get any points immediately with this action. Overall, fusion generally works 8 out
of 10 times.

Each new crystal you discover is worth 3 times more points than the most valuable crystal used
to produce it. Here are some examples:

• If <Fuse> a and b is successful, then the newly discovered crystal [ab] is worth 3 · 500
points = 1500 points.

• If <Fuse> [ab] and [ab] is successful, then the newly discovered crystal [[ab][ab]] is
worth 3 · 1500 = 4500 points.

• If <Fuse> [ab] and a is successful, then the newly discovered crystal [[ab]a] is worth
3 · 1500 = 4500 points.

Opportunities: You have 10 opportunities to either <Fuse> or <Extract> in each round. Repeating
a previously discovered or failed fusion will not consume an opportunity. You can track the
combinations you’ve already tried on the list provided on the right side of the machine.

Here is an example game play for one task:
Step 1:

ChatGPT’s Response

DO: <Fuse> a and b

Machine Response

• <Fuse> a and b is successful! You have discovered a new alien crystal [ab]! Now here
are your available alien crystals: a, b, c, d, e, f, [ab].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. Your total
points are 0. You have 9 opportunities left.

Step 2:

ChatGPT’s Response

DO: <Fuse>[ab] and b
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Machine Response

• <Fuse>[ab] and b is successful! You have discovered a new alien crystal [[ab]b]! Now
here are your available alien crystals: a, b, c, d, e, f, [ab], [[ab]b].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is worth
4500 points. Your total points are 0. You have 8 opportunities left.

Step 3:

ChatGPT’s Response

DO <Fuse>[[ab]b] and c

Machine Response

• <Fuse>[[ab]b] and c is successful! You have discovered a new alien crystal [[[ab]b]c]!
Now here are your available alien crystals: a, b, c, d, e, f, [ab], [[ab]b], [[[ab]b]c].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is
worth 4500 points. [[[ab]b]c] is worth 13500 points. Your total points are 0. You have
7 opportunities left.

Step 4:

ChatGPT’s Response

DO <Fuse>[[[ab]b]c] and d

Machine Response

• <Fuse>[[[ab]b]c] and d is successful! You have discovered a new alien crystal
[[[[ab]b]c]d]! Now here are your available alien crystals: a, b, c, d, e, f, [ab], [[ab]b],
[[[ab]b]c], [[[[ab]b]c]d].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is worth
4500 points. [[[ab]b]c] is worth 13500 points. [[[[ab]b]c]d] is worth 40500 points.
Your total points are 0. You have 6 opportunities left.

Step 5:

ChatGPT’s Response

DO <Fuse>[[[[ab]b]c]d] and e

Machine Response

• «Fuse>[[[[ab]b]c]d] and e is not successful! You have not discovered a new alien
crystal! Now here are your available alien crystals: a, b, c, d, e, f, [ab], [[ab]b],
[[[ab]b]c], [[[[ab]b]c]d].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is worth
4500 points. [[[ab]b]c] is worth 13500 points. [[[[ab]b]c]d] is worth 40500 points.
Your total points are 0. You have 5 opportunities left.

Step 6:
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ChatGPT’s Response

DO <Fuse>[[[[ab]b]c]d] and f

Machine Response

• <Fuse>[[[[ab]b]c]d] and f is successful! You have discovered a new alien crystal
[[[[[ab]b]c]d]f]! Now here are your available alien crystals: a, b, c, d, e, f, [ab], [[ab]b],
[[[ab]b]c], [[[[ab]b]c]d], [[[[[ab]b]c]d]f].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is
worth 4500 points. [[[ab]b]c] is worth 13500 points. [[[[ab]b]c]d] is worth 40500
points. [[[[[ab]b]c]d]f] is worth 121500 points. Your total points are 0. You have 4
opportunities left.

Step 7:

ChatGPT’s Response

DO <Fuse>[[[[[ab]b]c]d]f] and a

Machine Response

• <Fuse>[[[[[ab]b]c]d]f] and [a] is successful! You have discovered a new alien crystal
[[[[[[ab]b]c]d]f]a]! Now here are your available alien crystals: a, b, c, d, e, f, [ab],
[[ab]b], [[[ab]b]c], [[[[ab]b]c]d], [[[[[ab]b]c]d]f], [[[[[[ab]b]c]d]f]a].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is worth
4500 points. [[[ab]b]c] is worth 13500 points. [[[[ab]b]c]d] is worth 40500 points.
[[[[[ab]b]c]d]f] is worth 121500 points. [[[[[[ab]b]c]d]f]a] is worth 364500 points.
Your total points are 0. You have 3 opportunities left.

Step 8:

ChatGPT’s Response

DO <Fuse> [[[[[[ab]b]c]d]f]a] and a

Machine Response

• <Fuse> [[[[[[ab]b]c]d]f]a] and [a] is successful! You have discovered a new alien
crystal [[[[[[[ab]b]c]d]f]a]a]! Now here are your available alien crystals: a, b, c,
d, e, f, [ab], [[ab]b], [[[ab]b]c], [[[[ab]b]c]d], [[[[[ab]b]c]d]f], [[[[[[ab]b]c]d]f]a],
[[[[[[[ab]b]c]d]f]a]a].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is
worth 4500 points. [[[ab]b]c] is worth 13500 points. [[[[ab]b]c]d] is worth 40500
points. [[[[[ab]b]c]d]f] is worth 121500 points. [[[[[[ab]b]c]d]f]a] is worth 364500
points. [[[[[[[ab]b]c]d]f]a]a] is worth 1093500 points. Your total points are 0. You
have 2 opportunities left.

Step 9:
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ChatGPT’s Response

DO <Extract>[[[[[[[ab]b]c]d]f]a]a]

Machine Response

• Extracting [[[[[[[ab]b]c]d]f]a]a] gives you 1093500 points. Your total points are
1093500. You have 1 opportunities left.

Step 10:

ChatGPT’s Response

DO <Extract>[[[[[[[ab]b]c]d]f]a]a]

Machine Response

• Extracting [[[[[[[ab]b]c]d]f]a]a] gives you 1093500 points. Your total points are
2187000. You have 0 opportunities left. For task 1, you have gathered 2187000 in
total! Congratulations! Now ready for task 2? Here are your available alien crystals: a,
b, c, d, e, f, where each worth 500 points.

Game Prompt

Now let’s play this game! Note that the above example is just one way of playing the discovery
game. The strategies used in the example play may or may not be the optimal strategy to help
you to get as many points as possible! Remember, your goal is to collect as many points as
possible using 10 opportunities for 7 tasks. Remember ONLY respond with “DO: <Extract>
crystal” or “DO: <Fuse> crystal1 and crystal2” for each step, where crystal, crystal1, crystal2
are available alien crystals.

A.3.2 LLM MDP prompt

The rest of the prompt stays the same as the Direct Play prompt, except the optimal strategy is
computed by the rational model in Equation 2 has been informed explicitly. Here is an example from
the HH condition:

Game Description

The optimal strategy is guided by the following formula: Let d′ := D − d + 1 represent the
steps remaining. When

d′ ≥ 1

p(w − 1)
+ 1 =

1

0.8(3− 1)
+ 1 = 9,

where p represents: “fusion will work 8 out of 10 times” and w represents each new crystal
you discover is worth 3 times more points than the most valuable crystal used to produce it.
This strategy recommends switching from fusion to extraction at step 9 for optimal results.
Additionally, always extract the most valuable available crystal.

Here is an OPTIMAL game play:...
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Game Prompt

Now let’s play this game! Note that the above example is the optimal way of playing the
discovery game. Remember, your goal is to collect as many points as possible using 10
opportunities for 7 tasks.

A.3.3 LLM COT prompt

Game Description

Reasoning Process for Optimal Strategy:
Objective: The goal is to collect as many points as possible.
Decision Breakdown: Fuse: A successful fusion can create a new, more valuable crystal, but
it carries a risk of failure. The new crystal is worth 3 times more than the most valuable input
crystal. Extract: Extracting gives you guaranteed points from the current crystals. Switching
Strategy: The optimal strategy is determined by a formula. Let d′ := D − d+ 1 represent the
steps remaining. When

d′ ≥ 1

p(w − 1)
+ 1 =

1

0.8(3− 1)
+ 1 = 9,

where p represents: “fusion will work 8 out of 10 times” and w represents each new crystal
you discover is worth 3 times more points than the most valuable crystal used to produce it.
This means switching to extraction at step 9 is optimal. Additionally, always extract the most
valuable available crystal. Based on this, we fuse as much as possible until step 9, and then we
extract.
Reasoning Step-by-Step:

• Step 1-9: Fuse crystals to create more valuable ones, aiming to maximize the potential
points.

• Step 10: Switch to extracting the most valuable available crystal.
Here is an OPTIMAL game play:
Let’s go through an optimal game play with step-by-step reasoning for each action.

Step 1:

ChatGPT’s Response

DO: <Fuse> a and b
At this early stage, we want to attempt fusions to maximize future point potential. By fusing a
and b, we create a new crystal worth 1500 points, which can be further used in future fusions.

Machine Response

• <Fuse> a and b is successful! You have discovered a new alien crystal [ab]! Now here
are your available alien crystals: a, b, c, d, e, f, [ab].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. Your total
points are 0. You have 9 opportunities left.

Step 2:
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ChatGPT’s Response

DO: <Fuse>[ab] and b.
Reasoning: We continue fusing, as the formula suggests switching to extraction at step 9. By
fusing [ab] and b, we increase the value of the resulting crystal to 4500 points.

Machine Response

• <Fuse>[ab] and b is successful! You have discovered a new alien crystal [[ab]b]! Now
here are your available alien crystals: a, b, c, d, e, f, [ab], [[ab]b].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is worth
4500 points. Your total points are 0. You have 8 opportunities left.

Step 3:

ChatGPT’s Response

DO <Fuse>[[ab]b] and c
Reasoning: Following the same logic, fusing [[ab]b] and c increases the value of the crystal
further to 13500 points, creating more value for future extractions.

Machine Response

• <Fuse>[[ab]b] and c is successful! You have discovered a new alien crystal [[[ab]b]c]!
Now here are your available alien crystals: a, b, c, d, e, f, [ab], [[ab]b], [[[ab]b]c].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is
worth 4500 points. [[[ab]b]c] is worth 13500 points. Your total points are 0. You have
7 opportunities left.

Step 4:

ChatGPT’s Response

DO <Fuse>[[[ab]b]c] and d
Reasoning: At step 4, we continue to fuse since we are aiming for higher value crystals. The
new crystal is now worth 40500 points.

Machine Response

• <Fuse>[[[ab]b]c] and d is successful! You have discovered a new alien crystal
[[[[ab]b]c]d]! Now here are your available alien crystals: a, b, c, d, e, f, [ab], [[ab]b],
[[[ab]b]c], [[[[ab]b]c]d].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is worth
4500 points. [[[ab]b]c] is worth 13500 points. [[[[ab]b]c]d] is worth 40500 points.
Your total points are 0. You have 6 opportunities left.

Step 5:
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ChatGPT’s Response

DO <Fuse>[[[[ab]b]c]d] and e
Reasoning: At step 5, we attempt another fusion, although there’s a risk of failure. If successful,
we increase the potential value of the crystal for extraction.

Machine Response

• «Fuse>[[[[ab]b]c]d] and e is not successful! You have not discovered a new alien
crystal! Now here are your available alien crystals: a, b, c, d, e, f, [ab], [[ab]b],
[[[ab]b]c], [[[[ab]b]c]d].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is worth
4500 points. [[[ab]b]c] is worth 13500 points. [[[[ab]b]c]d] is worth 40500 points.
Your total points are 0. You have 5 opportunities left.

Step 6:

ChatGPT’s Response

DO <Fuse>[[[[ab]b]c]d] and f
Reasoning: Since fusion is still optimal, we aim for a fusion. A successful fusion here leads to a
crystal worth over 120,000 points.

Machine Response

• <Fuse>[[[[ab]b]c]d] and f is successful! You have discovered a new alien crystal
[[[[[ab]b]c]d]f]! Now here are your available alien crystals: a, b, c, d, e, f, [ab], [[ab]b],
[[[ab]b]c], [[[[ab]b]c]d], [[[[[ab]b]c]d]f].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is
worth 4500 points. [[[ab]b]c] is worth 13500 points. [[[[ab]b]c]d] is worth 40500
points. [[[[[ab]b]c]d]f] is worth 121500 points. Your total points are 0. You have 4
opportunities left.

Step 7:

ChatGPT’s Response

DO <Fuse>[[[[[ab]b]c]d]f] and a
Reasoning: Fusion remains the preferred action to maximize the value of the crystal.

Machine Response

• <Fuse>[[[[[ab]b]c]d]f] and [a] is successful! You have discovered a new alien crystal
[[[[[[ab]b]c]d]f]a]! Now here are your available alien crystals: a, b, c, d, e, f, [ab],
[[ab]b], [[[ab]b]c], [[[[ab]b]c]d], [[[[[ab]b]c]d]f], [[[[[[ab]b]c]d]f]a].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is worth
4500 points. [[[ab]b]c] is worth 13500 points. [[[[ab]b]c]d] is worth 40500 points.
[[[[[ab]b]c]d]f] is worth 121500 points. [[[[[[ab]b]c]d]f]a] is worth 364500 points.
Your total points are 0. You have 3 opportunities left.

Step 8:
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ChatGPT’s Response

DO <Fuse> [[[[[[ab]b]c]d]f]a] and a
Reasoning: Fusion remains the preferred action to maximize the value of the crystal.

Machine Response

• <Fuse> [[[[[[ab]b]c]d]f]a] and [a] is successful! You have discovered a new alien
crystal [[[[[[[ab]b]c]d]f]a]a]! Now here are your available alien crystals: a, b, c,
d, e, f, [ab], [[ab]b], [[[ab]b]c], [[[[ab]b]c]d], [[[[[ab]b]c]d]f], [[[[[[ab]b]c]d]f]a],
[[[[[[[ab]b]c]d]f]a]a].

• a, b, c, d, e, and f are worth 500 points each. [ab] is worth 1500 points. [[ab]b] is
worth 4500 points. [[[ab]b]c] is worth 13500 points. [[[[ab]b]c]d] is worth 40500
points. [[[[[ab]b]c]d]f] is worth 121500 points. [[[[[[ab]b]c]d]f]a] is worth 364500
points. [[[[[[[ab]b]c]d]f]a]a] is worth 1093500 points. Your total points are 0. You
have 2 opportunities left.

Step 9:

ChatGPT’s Response

DO <Extract>[[[[[[[ab]b]c]d]f]a]a]
Reasoning: This is the last opportunity to fuse before switching to extraction. After this step,
the next step will be extraction.

Machine Response

• Extracting [[[[[[[ab]b]c]d]f]a]a] gives you 1093500 points. Your total points are
1093500. You have 1 opportunities left.

Step 10:

ChatGPT’s Response

DO <Extract>[[[[[[[ab]b]c]d]f]a]a]
Reasoning: As per the formula, step 9 marks the switch from fusing to extracting. The highest
value crystal should now be extracted for maximum points.

Machine Response

• Extracting [[[[[[[ab]b]c]d]f]a]a] gives you 1093500 points. Your total points are
2187000. You have 0 opportunities left. For task 1, you have gathered 2187000 in
total! Congratulations! Now ready for task 2? Here are your available alien crystals: a,
b, c, d, e, f, where each worth 500 points.

A.3.4 LLM Analysis

To further analyze the LLM results, we plotted the most common switch step (Figure 4) and the best
fit lines of switch steps across seven tasks (Figure 5) for the switch-once proportions per condition
for each LLM agent.

Compared to the optimal switching point, GPT-3.5 with COT prompting performed best in the HH
condition. However, GPT-3.5 agents only chose to switch once in two out of seven tasks: one switch
occurred at step 9 (the optimal point), while the other occurred prematurely at step 1. Llama 3.1 with
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both MDP and COT prompts performed best in the HL condition; Llama 3.1 with COT prompting
performed best in the LH condition; and GPT-3.5 with Direct Play, as well as all MDP and COT
prompts, switched at the optimal point in the LL condition. When compared to participants’ most
common switch point, GPT-3.5 was the closest to human performance in the HH condition; in the
HL condition, Llama 3.1 most closely matched participants (most commonly switching at step 6); in
the LH condition, no model’s most common switch step aligned with participants’; and in the LL
condition, GPT-3.5 with Direct Play, along with all MDP and COT prompts, matched the participants’
switching step.

Figure 4: Most common switch step per condition for GPT 3.5, GPT 4.0, and Llama 3.1 models of
Direct Play, MDP, and COT Prompting.

As participants might use belief-update systems to gradually approaching to near-optimal or optimal
switch point, LLM agents fail to resemble similar behaviors. With the help of COT and MDP
prompting, LLM agents started with switching optimally and gradually deviate away from the
optimal solution (Figure 5).

Figure 5: Switch-once steps across seven tasks per condition for GPT 3.5, GPT 4.0, and Llama 3.1
models of Direct Play, MDP, and COT Prompting.
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