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Abstract14

15

A hallmark of effective teaching is that it grants learners not just a collection of facts16

about the world, but also a toolkit of abstractions that can be applied to solve new problems.17

How do humans transmit and acquire generalizable abstractions from examples? Here, we18

applied Bayesian models of pedagogy to a necklace-building task where teachers create19

necklaces to teach a learner “motifs” that can be flexibly recombined to create new necklaces.20

In Experiment 1 (N = 151), we find that human teachers produce necklaces that are simpler21

(i.e., have lower algorithmic complexity) than would be expected by chance, as indexed by a22

model that samples uniformly from all necklaces that contain the target motifs. This tendency23

to select simpler examples is partially captured by a pedagogical sampling model that tries to24

maximize the learner’s belief in the underlying motifs. In Experiment 2 (N = 295), we find25

that simplicity is beneficial. Human learners recover the underlying motifs better when26

teachers produce simpler sequences, and they learn best from human teachers rather than27

from model-generated examples. Our results suggest that the computational principles that28

underlie effective communication and teaching may also provide a first step towards29

understanding the transmission of culturally-specific abstractions.30
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1 Introduction31

Teaching is a powerful means of transmitting culturally-specific abstractions, thereby laying the32

foundations to accumulate generalizable skills and knowledge across generations (Kline, 2015;33

Legare, 2019). One important kind of abstraction is a motif, a recurring pattern that can be34

composed into a larger work. For example, the basic stitches in knitting (knits and purls) are used35

to make recurring motifs or stitch patterns (e.g., stockinette, rib stitch) that can be flexibly36

combined to make many products (e.g., hats, scarves, sweaters). Motifs are found in many37

cultural products and often bear traces of the communities that produced them (Pesowski, Quy,38

Lee, & Schachner, 2020; Schachner, Brady, Oro, & Lee, 2018), such as the elaborate cable-knit39

patterns of Aran sweaters, the fundamental rhythmic pattern or clave of salsa music, and meander40

designs on the borders of Greek pottery.41

Motifs pose a particular challenge for existing computational theories of social learning.42

Existing pedagogical sampling models characterize teaching and social learning as a series of43

recursive inferences: Teachers select examples that will maximize a learner’s belief in a target44

concept, and learners work backwards from the examples provided to infer the concept that the45

teacher is trying to communicate to them (Gweon, 2021; Shafto, Goodman, & Griffiths, 2014;46

Shafto, Wang, & Wang, 2021). This basic principle can explain a wide variety of communicative47

behaviors, including how teaching through demonstration differs from goal-directed behavior48

(Ho, Littman, MacGlashan, Cushman, & Austerweil, 2016; Tominaga, Knoblich, & Sebanz,49

2022), how parents tune their speech to teach phonetic structures to infants (Eaves, Feldman,50

Griffiths, & Shafto, 2016), and how teachers improve their teaching based on feedback from51

learners (Chen, Palacci, Vélez, Hawkins, & Gershman, 2024). In addition, these computations52

appear to be neurally instantiated in mentalizing regions when teachers make decisions about53

what information to communicate to a learner (Vélez, Chen, Burke, Cushman, & Gershman,54

2023).55

However, prior work has largely focused on capturing how learners acquire solutions to56

particular problems (such as how to operate a particular toy; Aboody, Velez-Ginorio, Santos, &57
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Jara-Ettinger, 2023; Bridgers, Jara-Ettinger, & Gweon, 2020; Buchsbaum, Gopnik, Griffiths, &58

Shafto, 2011) or identify the extension of particular categories (such as inferring the extent of a59

hidden shape on a canvas; Shafto et al., 2014; Vélez et al., 2023). Most of these problems involve60

a teacher choosing examples that constitute a part of the target that they intend to teach, such as a61

single function of a toy with many functions or a single pixel inside a larger shape. Teaching62

motifs presents the converse problem. For example, suppose an expert knitter draws a novice’s63

attention to the rib stitch pattern on the collar of a sweater. Her goal is not to help the novice64

identify sweaters based on this distinctive sub-component, as is the case in traditional teaching65

games (Avrahami et al., 1997). Rather, the sub-component itself is the target of teaching; the66

novice can later abstract away this sub-component to knit sock cuffs and hatbands. We do not yet67

know to what extent pedagogical sampling models capture human behavior in this kind of68

teaching problem, where examples of the whole are used to teach parts.69

To approach this question, we studied how people teach and learn motifs within a simple70

necklace-building task inspired by prior studies of cultural transmission (Clegg & Legare, 2016a,71

2016b; Kleiman-Weiner et al., 2020). In Experiment 1 (N = 151), we tested to what extent72

existing pedagogical sampling models capture how teachers transmit motifs. In this task, teachers73

demonstrated motifs—recurring patterns of beads—by providing a single sample necklace.74

Overall, our pedagogical sampling model provides a better quantitative fit to teachers’ decisions,75

compared to a baseline model that samples uniformly from all necklaces that contain the target76

motifs. The pedagogical sampling model also captures an important qualitative pattern in77

teachers’ behavior: Teachers produce simpler examples than would be expected by chance. Next,78

in Experiment 2 (N = 295), we tested the limits of existing models by giving human learners a79

single sample necklace and asking them to both infer the underlying motifs and produce two new80

necklaces that incorporate these motifs. Overall, learners perform better at both tasks when given81

examples that are generated by human teachers or sampled from the pedagogical sampling model,82

compared to necklaces generated by the baseline model. The effectiveness of these examples is83

largely explained by simplicity—across the board, learners are better able to recover underlying84
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motifs when given simpler examples. However, learners performed best overall when given85

human-generated examples, which suggests that state-of-the-art pedagogy models still miss86

aspects of what makes human teaching effective. We close by discussing how pedagogical87

sampling models could be extended to better capture how abstractions are culturally transmitted.88

All experiment materials, data, and analysis code are publicly available at89

https://osf.io/rnb9e/?view_only=099dadc807964263a8e1196ce3dd2311.90

2 Computational framework91

2.1 Task setup92

The experiments below use a necklace-building task as a simple case study of how people acquire93

and transmit culturally-specific motifs. In prior work, necklace-building tasks have been used to94

study basic mechanisms that drive cultural transmission, including how faithfully children imitate95

(Clegg & Legare, 2016a, 2016b) and how adults learn concepts from step-by-step demonstrations96

(Kleiman-Weiner et al., 2020). Experimental stimuli were adapted from Kleiman-Weiner et al.97

(2020).98

In Experiment 1 (Teaching Abstractions), participants play the role of expert artisans; their99

task is to travel from one village to another, teaching an apprentice how to produce necklaces that100

will sell well in each village. In our setting, each necklace is a string of 10 orange and green beads101

that can be represented as a binary sequence. Each village has three favorite motifs, which are sub-102

sequences of 2 or 3 beads that can be recombined to make necklaces (Figure 1A). A necklace sells103

well in a village if and only if it includes all three of the motifs favored in that village (Figure 1B).104

In Experiment 2 (Learning Abstractions), participants played the role of the apprentice. In each105

village, participants saw one necklace generated by an expert teacher; their task was to infer the106

underlying motifs in the necklace and to use these motifs to create new necklaces of their own.107

In both experiments, we modeled teachers’ and learners’ behavior using two models: a108

baseline model that assumes that the teacher samples uniformly among all necklaces that contain109

the correct motifs, and a Bayesian pedagogy model that selects necklaces to teach that will110
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Figure 1: Teaching task. A-C. Experiment interface: A. On each trial, participants were shown the
motifs favored by each village. B. These motifs can be recombined to create many new necklaces.
C. Participants created a single sample necklace to teach learners these three motifs. D. Model
schematic: The pedagogical sampling model actively selects necklaces d to teach (PT (d|h))) by
anticipating how learners will recover the underlying motifs h from the sample necklace (PL(h|d)).

maximize the learner’s posterior beliefs in the correct motifs. To borrow terminology from prior111

work (Shafto et al., 2014), we will refer to these models as the “strong sampling” and112

“pedagogical sampling” models, respectively. We explain these models in more detail below.113

2.2 Strong sampling model114

Strong sampling refers to a process where examples are uniformly sampled from a target115

hypothesis (Shafto et al., 2014; Tenenbaum & Griffiths, 2001). In our task, each “example” is a116

sample necklace, and each “hypothesis” is a set of three motifs. In other words, the strong117

sampling model chooses uniformly among all necklaces that contain all three motifs favored by a118

particular village. We compared the strong sampling model to the behavior of both teachers and119

learners. In Experiment 1, comparing the fit of the pedagogical sampling model to that of the120

strong sampling model provides evidence about the extent to which teachers’ decisions are guided121

by higher-order inferences about a hypothetical learner’s beliefs (see Teacher model, below). In122

Experiment 2, we constructed a learner model that assumes that the teacher’s examples were123
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selected using strong sampling; we used this model as a baseline to measure how accurately124

human learners could be expected to recover the target hypothesis based on a single example (see125

Learner baseline model, below).126

2.2.1 Teacher model127

Given a hypothesis h, the strong sampling model predicts that the probability of selecting any128

sample necklace d is inversely proportional to the number of necklaces that contain the target129

motifs:130

Pstrong(d|h) =


1
|h| if d ∈ h

0 otherwise
(1)

We generated the predictions of the strong sampling model by first creating a matrix CCC of131

hypotheses and data. The rows contain all possible 10-bead necklaces (210 = 1024 possible132

necklaces) and the columns contain all possible triplets of motifs (with 22 possible 2-bead motifs133

and 23 3-bead motifs, there are
(22+23

3

)
= 220 possible hypotheses). Each cell cd,h of this matrix134

indicates whether the necklace d could have been generated by combining the three motifs in h135

(cd,h = 1) or not (cd,h = 0). Thus, Equation 1 is equivalent to the following matrix operation:136

Pstrong(d|h) =
cd,h

∑d′ cd′,h
. (2)

which corresponds to normalizing the entries of each column by its sum.137

2.2.2 Baseline learner model138

The baseline learner model assumes that the teacher selects a sample necklace d using strong139

sampling. We can use Bayes’ rule to obtain the posterior distribution over motifs given the example140

provided:141

Pbaseline(h|d) =
Pstrong(d|h)P(h)

∑h′ Pstrong(d|h′)P(h′)
. (3)

where Pstrong(d|h) is the probability of selecting the sample necklace d under strong sampling when142

the true hypothesis is h (Equation 1) and P(h) is the prior probability assigned to the hypothesis h.143
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The model further assumes a uniform prior over all sets of motifs (h), so P(h) is the same for all h.144

Thus, Equation 3 can be simplified as:145

Pbaseline(h|d) =
Pstrong(d|h)

∑h′ Pstrong(d|h′)
. (4)

2.3 Pedagogical sampling model146

The pedagogical sampling model chooses necklaces to teach by anticipating how the learner will147

recover motifs from the example provided. Thus, rather than sampling uniformly from all148

necklaces that contain the target motifs, this model favors necklaces that are consistent with fewer149

alternative hypotheses. Intuitively, this strategy reduces the risk that learners will recover the150

wrong set of motifs from the sample necklace.151

As an illustration, suppose that a village favors necklaces that contain the motifs “000”,152

“11”, and “001”. These motifs can be used to make many necklaces, including the following two153

examples:154

0000000111 → [000]00[001][11]

0001100011 → 0[001]1[000][11]
(5)

Here, the left side of each line shows the necklace as it would appear to a learner, and the right155

side breaks down each example into its component motifs. Note that both of these examples156

are ambiguous; there are several alternative sets of motifs that could have generated either of157

these necklaces. However, the model favors the necklace “0000000111” because there are fewer158

incorrect ways to parse it. Besides the 3 target motifs, this necklace is consistent with 4 incorrect159

motifs (i.e., “111”, “011”, “01”, “00”), which make up 13 consistent but incorrect alternative160

hypotheses (e.g., “00|000|11”, “11|01|000”). By contrast, “0001100011” can be parsed incorrectly161

in more ways. In addition to the 3 correct motifs, this necklace is consistent with 6 incorrect motifs162

(i.e., “00”,“01”,“10”,“100”,“011”,“110”), which make up 46 consistent but incorrect alternative163

hypotheses (e.g., “00|100|11”, “110|011|000”).164
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More formally, this model characterizes pedagogy as a form of cooperative communication165

between a teacher and a learner (Shafto et al., 2021). The model assumes that both the teacher166

and the learner have common knowledge about a space of hypotheses (i.e., all possible triplets of167

motifs) and a space of data (i.e., all possible necklaces; Shafto et al., 2014). The teacher selects168

necklaces to show to the learner that will maximize the learner’s beliefs in the true set of motifs169

favored by a particular village, and the learner works backwards from the necklace provided to170

infer what motifs the teacher is trying to demonstrate. These recursive inferences between the171

teacher and the learner are captured using the following system of equations:172

Plearner(h|d) =
Pteacher(d|h)p(h)

∑h′ Pteacher(d|h′)p(h′)
, (6)

173

Pteacher(d|h) ∝ Plearner(h|d)α , (7)

where α is a free parameter that controls how strongly the teacher favors examples that maximize174

the learner’s posterior belief in the true motifs. In the results below, we fit α to individual175

participants’ responses in Experiment 1.176

Following the procedure in Shafto et al. (2014), we calculated a solution to this system of177

equations using fixed-point iteration. We began by normalizing each column of the matrix CCC by178

its sum, as in the strong sampling model (Equation 2). Next, we implemented the recursive179

inferences that distinguish pedagogical sampling from strong sampling by renormalizing this180

matrix. In the first iteration of this procedure, we normalized each row by its sum to generate181

Plearner(h|d). Intuitively, each row of this matrix represents the posterior beliefs of a learner who182

assumes that the sample necklace d was generated using strong sampling. (Note that these first183

two iterations are equivalent to the strong sampling and learner models described in the previous184

section.) In the next iteration, we raised CCC to the power of α and normalized each column by its185

sum to generate Pteacher(d|h). Each column of this matrix represents the choice probabilities of a186

teacher who selects examples by considering the beliefs of the learner in the prior iteration.187

Each iteration of this procedure represents an additional recursive inference. For example,188
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the next iteration yields the beliefs of a learner who tries to interpret what hypothesis the teacher189

is attempting to communicate, and the next iteration after that yields the choice probabilities of a190

teacher who tries to maximize the beliefs of a learner who actively interprets their examples, and191

so on. In principle, we could iterate this system of equations indefinitely; in practice, Plearner(h|d)192

and Pteacher(d|h) converge to a fixed point after a finite number of steps (Wang, Wang, Paranamana,193

& Shafto, 2020). We set the tolerance of convergence to 10−12.194

3 Experiment 1: Teaching abstractions195

In Experiment 1, participants played the role of teachers. Their task was to provide a single196

sample necklace to teach a learner generalizable “motifs” that could be recombined to produce197

new necklaces that would sell well in a particular village. We compared the necklaces generated198

by human teachers to those selected by a model that randomly selects a necklace that is consistent199

with the target motifs (strong sampling) and a model that maximizes the learner’s belief in the200

target motifs (pedagogical sampling).201

3.1 Methods202

3.1.1 Participants203

We aimed to recruit 150 participants for the teaching task on Prolific (preregistration available204

at https://aspredicted.org/GPT_HNV). In both experiments, participants were recruited through205

the standard sample option; only participants who resided in the US, had an approval rate over206

95%, were fluent in English, and completed 100 to 10000 studies were eligible to sign up. We207

obtained data from 151 participants (M(SD) age = 39.78(13.73), 94 female, 53 male, and 4 non-208

binary), potentially due to a server error at the time of submission. Participants earned $3 for their209

participation, and they were told that they could earn a performance bonus of up to $1 based on210

how well participants in Experiment 2 learned from the examples they selected. Thus, participants211

were incentivized to provide helpful examples. In all experiments, participants provided informed212

consent in accordance with the requirements of the Institutional Review Board.213
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3.1.2 Procedure214

Participants played the role of master artisans; their task was to travel to 18 different villages and215

teach an apprentice how to produce necklaces that would sell well in each village. On each trial,216

participants were shown the motifs favored by a new village and were asked to create a single217

10-bead necklace that contains all motifs favored by that village. Each village had a unique set of218

motifs, and villages were presented in a randomized order.219

On each trial, participants saw the 3 motifs favored by the village displayed on the top of220

the screen, and they typed in a sample necklace by placing beads on an empty string in sequence.221

For example, if a village had the motifs 000, 10, 111 teachers could pass on these motifs by222

producing the necklace 0001011110 (emphasis added for demonstration). Participants could erase223

beads from the sequence to correct mistakes and press a “submit” button when they were finished224

with the sample necklace. To better align the task with our modeling assumptions, we constrained225

participants’ responses so that they had to include all three motifs in their sample necklace; if the226

necklace they produced was not valid, participants were prompted to correct the necklace before227

proceeding.228

3.1.3 Computational modeling229

Model fitting and comparison: We compared models to participants’ responses using random-230

effects Bayesian model selection (Rigoux, Stephan, Friston, & Daunizeau, 2014). First, we used231

maximum likelihood estimation to fit the α parameter of the pedagogical sampling model to each232

participant’s responses. For each participant, we then evaluated the fit of the strong sampling233

and the pedagogical sampling models using the Bayesian information criterion (BIC = klog(n)−234

2log(L)), where k is the number of free parameters in the model (0 for strong sampling and 1235

for pedagogical sampling), n is the number of trials observed per participant (which was fixed at236

n = 18), and L is the maximized value of the probability of the data under the model. Finally, we237

used −0.5×BIC as an estimate of log model evidence for each participant (Bishop & Nasrabadi,238

2006) and used it to compute the protected exceedance probability (pxp) for each model. Protected239
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exceedance probabilities treat models as random effects that can vary between participants; this240

measure can be interpreted as the probability that a given model occurs most frequently in the241

population.242

Model simulation: In addition to the model comparison procedure described above, we also243

used fitted models to create simulated datasets. Intuitively, simulated datasets allow us to compare244

to what extent the necklaces produced by participants overlap with those that would be produced by245

each model. To create simulated datasets, we first used the fitted α parameters for each participant246

to create matrices of choice probabilities (pT (d|h)) and then sampled from this matrix of choice247

probabilities to obtain simulated responses.248

Measuring sequence complexity: We measured the algorithmic complexity of sample249

necklaces produced by human participants and in simulated datasets using the block250

decomposition method (Zenil, Toscano, & Gauvrit, 2022). We chose this measure of algorithmic251

complexity because of its theoretic connection with Kolmogorov complexity and algorithmic252

information theory (Chaitin, 1969; Kolmogorov, 1965; Solmonoff, 1964) and also because it253

captures well human subjective judgments of sequence randomness (Gauvrit, Singmann,254

Soler-Toscano, & Zenil, 2016; Gauvrit, Zenil, Delahaye, & Soler-Toscano, 2014; Planton et al.,255

2021). Intuitively, complexity scores provide an estimate of the length of the shortest program256

needed to recreate each necklace.257

3.2 Results258

Both human participants and the pedagogical sampling model tended to create sample necklaces259

that were simpler than those created by a strong sampling model (Figure 2A–B). We performed a260

linear mixed-effects regression that predicted the algorithmic complexity of sample necklaces261

based on fixed effects and random slopes of teacher type (human, pedagogical model, strong262

sampling model) and random intercepts by villages (18 different ground-truth sets of motifs).263

Both participants and the pedagogical sampling model created sample necklaces with lower264

algorithmic complexity than those produced by the strong sampling model (human-generated vs.265

strong-sampled necklaces: b = −0.565, t(17.001) = −6.709, p < 0.001; pedagogically-sampled266
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Figure 2: Experiment 1 results. A. Distribution of algorithmic complexity scores for human-
generated necklaces (black line) and model-simulated necklaces (orange, blue lines). B. Average
algorithmic complexity by teacher type. Human-created sample necklaces have the lowest mean
complexity. Error bars denote standard error of the mean. C. Model comparison: Each tick-bar
represents the fit between the pedagogical sampling model and a single participant’s responses,
as measured by the Bayesian information criterion (BIC). Orange dotted line indicates the mean
model evidences for the pedagogical sampling model. The blue dotted line indicates the BIC
of the strong-sampling model; because this model selects uniformly among all valid necklaces,
the probability of each participant’s responses under this model is a fixed value. Thus, points to
the left of this blue line (lower BIC) are better fit by the pedagogical sampling model. Overall,
participants’ responses were better captured by the pedagogical sampling model, compared to the
strong sampling model.

vs. strong-sampled necklaces: b = −0.243, t(17.003) = −7.108, p < 0.001). Accordingly,267

participants’ choices were also better captured by the pedagogical sampling model (pxp = 1.000;268

see Figure 2C for model evidences). These results suggest that the pedagogical sampling model269

captures a specific pattern in how people teach generalizable abstractions: Namely, effective270

teaching favors simpler examples. Note that we did not explicitly instruct the model to favor271

simpler examples—instead, this preference stems from a more general communicative principle.272

However, the pedagogical sampling model alone does not account for the full pattern of273

participants’ responses. The examples generated by participants were still simpler than those274

simulated by the pedagogical sampling model (pedagogically-sampled vs. human examples:275
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b = 0.322, t(16.997) = 5.648, p < 0.001). Adding a penalty term for sequence complexity to the276

pedagogical sampling model did not close this gap (see Figure S1). These results suggest that277

participants’ decisions may have been guided by additional inductive biases about what kinds of278

simple examples are useful; if this is the case, then learners might derive benefits from279

human-generated examples that are not fully captured by pedagogical sampling alone. In the280

following experiment, we tested whether learners can indeed recover motifs from a single sample281

necklace, and whether they learn best from examples generated by human teachers.282

4 Experiment 2: Learning abstractions283

Our results thus far suggest that reasoning about learners’ mental states drives teachers to create284

simpler necklaces than would be expected by chance. However, it is an open question whether285

this simplicity aids learning—that is, whether the examples selected by teachers actually help286

others recover the underlying motifs. In our second experiment, we approached these questions by287

directly testing how well people learn triplets of motifs from observing a single sample necklace.288

Sample necklaces were selected from those generated by human teachers in Experiment 1 and289

from simulated datasets generated using the strong sampling and pedagogical sampling models.290

4.1 Methods291

4.1.1 Participants292

We aimed to recruit 300 participants for the learning task on the Prolific platform using the standard293

sample option (https://aspredicted.org/CK3_1NP). We lost data from 5 participants due to294

server errors, leaving us with 295 participants for the learner task (M(SD) age = 40.02(12.31), 142295

female, 149 male, and 4 non-binary). Participants were paid $5 for completing the task, plus a296

bonus of up to $1 contingent on performance.297

4.1.2 Procedure298

Participants were told that they were apprentices to a master artisan. Their task was to travel to 18299

villages and learn how to produce necklaces that would sell well in each village. As in Experiment300
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1, participants were told that necklaces would only sell well in a particular village if and only if301

they contained all three motifs favored by that village. However, participants in Experiment 2 were302

not shown these motifs directly; instead, they saw a single sample necklace generated by a teacher303

and had to infer the motifs represented by the necklace.304

On each trial, participants saw the sample necklace on the top of the screen and answered305

two questions about the village’s motifs (Figure 3A). First, participants typed the motifs that they306

believed that the village favors. As described above (Computational framework), each motif was307

a sequence of 2 or 3 beads. Participants could erase the beads that they typed to correct mistakes,308

and submit the motifs when they were ready. Once they submitted the three motifs, participants309

could not change their responses. Next, participants were shown two empty necklaces and asked310

to create two new necklaces that would sell well in that village. Participants could only proceed311

if they produced two unique, length-10 necklaces that were distinct from the sample necklace.312

Villages were presented in a random order.313

Participants completed three within-subjects conditions, which differed in how sample314

necklaces were generated. In the Human condition, participants saw sample necklaces created by315

participants in Experiment 1. By contrast, in the Pedagogical and Strong conditions, participants316

were shown sample necklaces that were simulated using the pedagogical- and strong-sampling317

models, respectively. (See Experiment 1 for more details on how model-simulated necklaces were318

generated.) Participants completed 18 trials total, comprising 6 trials for each teacher type.319

Participants were blind to condition; that is, they did not know what type of teacher generated320

each necklace. This experimental manipulation allows us to compare the effectiveness of human-321

and model-generated examples.322

4.2 Results323

We measured participants’ performance using two outcome measures: The number of unique324

motifs correctly reported by the participant (correct motifs; range: 0–3, where higher scores325

indicate better performance) and the minimum number of changes that would have to be made to326

change participants’ necklaces into a necklace that is consistent with the ground-truth motifs327
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Figure 3: Experiment 2 results. A. Task interface: Participants saw a single sample necklace (top)
that contained all three motifs favored by each village. They then explicitly reported the motifs
(middle) and created two unique necklaces that were distinct from the sample necklace (bottom).
B. Learning outcomes by teacher type: We measured learners’ performance based on the number
of motifs that they correctly reported (range 1–3; higher scores indicate better performance) and the
minimum number of edits needed to transform learners’ necklaces into a correct necklace (range
0–10; lower scores indicate better performance). Each point denotes a single participant’s average
performance; white diamonds denote average scores by teacher type. As a baseline, we compared
these scores to the performance of a learner model that infers the underlying motifs by assuming
that teachers select examples using strong sampling (purple line). C. Correlation between the
algorithmic complexity of the sample necklace and learner performance, as indexed by the number
of correct motifs (left) and edit distance (right). Shaded areas denote 95% confidence intervals.
Participants performed better when they were shown simpler sample necklaces.

(minimum edit distance; range: 0–10, where lower scores indicate better performance). We328

modeled each outcome using a mixed-effects ordinal regression with fixed effects of teacher type329

(i.e., Human, Pedagogical, Strong, with Strong as the reference level) and random slopes of330

teacher type by village.331

Overall, participants learned best when they received sample necklaces selected by human332

teachers, rather than necklaces generated by the pedagogical- and strong-sampling models333

(Figure 3B). Participants reported more correct motifs when the examples were generated by the334

pedagogical-sampling model (Pedagogical vs. Strong: b = 0.349,z = 5.120, p < 0.001) and by335

human participants from Experiment 1 (Human vs. Strong: b = 0.702,z = 8.011, p < 0.001),336
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compared to the strong sampling model. However, participants recovered the most motifs overall337

when they received examples generated by a human (Human vs. Pedagogical:338

b = 0.341,z = 4.230, p < 0.001). Next, we found a similar pattern in the necklaces that learners339

generated. Participants generated necklaces that were closer to the target motifs (i.e., had lower340

minimum edit distances) when they received sample necklaces from a human teacher (Human vs.341

Strong: b = −0.336,z = −4.249, p < 0.001), but not necklaces generated by the342

pedagogical-sampling model (Pedagogical vs. Strong: b = −0.091,z = −1.090, p = 0.276).343

Overall, participants produced more accurate necklaces when they received examples from a344

human (Human vs. Pedagogical: b =−0.244,z =−4.354, p < 0.001).345

On average, participants recovered approximately one of the three motifs specific to each346

village (mean(SE) number of motifs: 0.987(0.015)) and produced necklaces that were less than347

one bead away from an acceptable necklace (mean(SE) minimum edit distance: 0.566(0.013))348

when provided a single sample necklace by a teacher. How well could participants be expected349

to do, given the sparse and ambiguous information given to them? We benchmarked participants’350

performance against the performance of the baseline learner model described above. We used351

this model in two ways. First, we sampled a triplet of motifs from Pbaseline(h|d) (Equation 4) to352

model how learners reported the motifs contained within each sample necklace. Second, the model353

samples uniformly from all necklaces that contain this triplet to create two new necklaces.354

Overall, we find that the learner baseline captures qualitative patterns in learner performance.355

Like human learners, the baseline learner recovered approximately one of the three motifs specific356

to each village (mean(SE) number of motifs: 1.168(0.004)) and produced necklaces that were less357

than one bead away from an acceptable necklace (mean(SE) minimum edit distance: 0.547(0.006)).358

To compare quantitative fits, we compared participants’ actual performance against this benchmark359

using paired Wilcoxon tests. Regardless of teacher type, participants reported slightly fewer correct360

motifs than the learner baseline (all p < .05 with the average difference of 0.178 motifs) and361

produced necklaces with similar minimum edit distances as the learner baseline (all p > .2). (We362

note one difference between the learner baseline and participants’ behavior: In 30% of trials,363
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participants reported motifs that were not consistent with the sample necklace they were provided.364

Thus, it is possible that participants may have been inattentive. In an exploratory analysis, we365

found that excluding these observations improved human learners’ average performance slightly366

but did not affect our interpretation of the results; see SI.) Thus, while participants underperformed367

slightly relative to our baseline, they recovered about as much information as we could expect from368

a single example.369

To understand what makes human-generated examples particularly effective, we next used370

mixed-effects ordinal regressions to model learners’ performance based on an interaction between371

teacher type and the algorithmic complexity of the sample necklaces provided; we also included372

random effects of teacher type and algorithmic complexity by village. Participants who received373

more complex sample necklaces reported fewer correct motifs (effect on correct motifs:374

b = −0.293,z = −3.699, p < 0.001) and produced necklaces that were farther from correct375

necklaces (effect on minimum edit distance: b = 0.269,z = 4.721, p < 0.001).376

Together, our results suggest that simplicity is beneficial: Participants indeed learned better377

when they were given simpler examples. However, participants still learned best when given378

examples by human teachers—even though they were not aware of our experimental379

manipulation—which suggests that existing models of teaching do not fully capture what makes380

human teaching so effective. In the Discussion, we will consider how to bridge this gap.381

5 Discussion382

Teaching useful and generalizable abstractions underlies cultural and technological achievements383

that require flexibility, innovation, and creativity. In this paper, we tested to what extent existing384

models of teaching capture how humans teach generalizable abstractions. Overall, we found that385

the general computational principles that underlie effective teaching and communication, as386

formalized by the pedagogical sampling model, also capture a specific pattern in how humans387

teach and acquire generalizable abstractions: Teachers favor simple examples, and learners learn388

best from simple examples, without explicitly building simplicity as an assumption into our389
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models of either teachers or learners. However, our results also suggest that human teachers and390

learners are even more sensitive to simplicity than this model would predict, highlighting an391

exciting direction for future research.392

Our results speak to prior theoretical debates on the importance of providing simpler data—393

or “starting small”—for effective learning. “Starting small” refers to a hypothesis that learning394

benefits from starting with simpler training data, both in humans and in artificial neural networks395

(Elman, 1993; Rafferty & Griffiths, 2010; Zhao, Lucas, & Bramley, 2024). Our findings reveal396

a similar phenomenon, where participants were better able to recover reusable abstractions when397

they received simpler examples. Moreover, our model reveals that one reason why simplicity is398

helpful is that it constrains the ways that learners can interpret the examples. However, the fact399

that participants also favored examples that were even simpler than pedagogical sampling alone400

would suggest that these models explain part but not all of what drives teachers to simplicity. We401

speculate that there are additional inductive biases favoring simple patterns that recursive Bayesian402

reasoning alone does not capture. For example, teachers may expect learners to parse necklaces403

directionally, as though they were reading a script; for example, if learners “read” necklaces from404

left to right, they may be more likely to interpret beads at the end of the necklace as overhang, rather405

than as part of a motif. In addition, our model assumes that learners can perfectly evaluate whether406

a necklace is consistent with a set of motifs. Human teachers may not share this assumption;407

instead, they may favor even simpler necklaces to guide fallible learners who may make mistakes408

when picking out motifs.409

Overall, our findings provide a first demonstration of the usefulness of Bayesian pedagogy410

for understanding how humans transmit generalizable, culturally-specific abstractions. However,411

there are still many aspects of this domain that our simple task and model do not capture. Most412

notably, our work examines how learners recover abstractions from a single data point. While our413

findings show that learners can obtain some information even from this very sparse data, our task414

stands in stark contrast to how skills are taught outside of the lab. Novices do not learn how to415

knit a moss stitch or play musical chords from just a single example, but instead through repeated416
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interactions where an expert provides opportunities for learners to observe skills, corrects their417

work, and sometimes provides explicit instruction (Kline, 2015). This additional structure has been418

argued to be essential for the stable transmission of complex skills (Caldwell, Renner, & Atkinson,419

2018; Tehrani & Riede, 2008). In addition, while the motifs in our task were simple sequences that420

could be recombined in arbitrary ways, real-world cultural motifs are often imbued with meaning421

(Cohn, 2012; Hawkins, Sano, Goodman, & Fan, 2023; Long, Fan, Huey, Chai, & Frank, 2024).422

For example, skull motifs can remind viewers of the inevitability of death, and peonies appear423

frequently in Chinese art as a symbol of prosperity and wealth. It is an open question how teachers424

and learners coordinate on the meaning of motifs, or how these meanings constrain how motifs are425

deployed. Thus, more work is needed to extend existing theories of pedagogy to fully embrace the426

complexity of teaching generalizable abstractions.427

Our work provides a theoretical and empirical framework to understand how teaching enables428

learners to flexibly act, create, and innovate. We hope that revealing further components of this429

ability will provide a fuller picture of how human intelligence is augmented by social learning and430

culture.431
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Supplemental Material

August 28, 2024

1 Building a complexity penalty into the pedagogical sampling model
In the main text, we report that teachers select examples that are even simpler than those

selected by the pedagogical sampling model. As an exploratory analysis, we attempted to

bridge this gap by extending the model with a penalty for more complex examples. We first

obtained the learner’s posterior beliefs from the pedagogical sampling model, as described

in the main text:

Plearner(h|d) =
Pteacher(d|h)p(h)∑
h′ Pteacher(d|h′)p(h′)

, (1)

Next, we defined the utility of teaching hypothesis h (a triplet of motifs) with example d

(a sample necklace) by combining the learner’s posterior beliefs with the simplicity score:

U(d|h) = ln(Plearner(h|d))− wC(d) (2)

where the negative surprisal term, ln(Plearner(h|d)), captures the informational value of the

example to the learner, and the complexity penalty, C(d), is defined as the algorithmic

complexity of d. w is the weight of the complexity penalty. Lastly, the utility score is

converted into the probability of choosing d through a softmax function:

Pteacher(d|h) =
eU(d|h)∑
d′ e

U(d′|h) (3)

1.1 Results

We used the model estimation and model comparison procedures described in Experiment

1 of the main text. First, we used maximum likelihood estimation to fit the α and w

parameters of the model. Next, we used Bayesian model selection to compare the fit of

complexity penalty model (Figure S1, “with simplicity”) to the original pedagogical sampling

model (Figure S1, “without simplicity”). Even after directly penalizing complex examples,

the original pedagogical sampling model best captures the behavior of human teachers (PXP

= 1). These results suggest that people may not favor simpler examples for simplicity’s sake;

1



instead, the decisions of human teachers may be guided by additional inductive biases that

are not captured by existing theories. We return to this point in the General Discussion.

Figure S1: Bayesian information criterion (BIC): each dot represents the BIC of the model of each
participant. The red dotted line indicates the BIC of the strong-sampling model. This shows overall,
the original pedagogical model fit better (smaller BIC) than the pedagogical model that includes
the simplicity score.

2 Stimuli
We chose 18 triplets of motifs for the 18 villages that participants visit in both the teacher

task (Experiment 1) and learner task (Experiment 2). 9 villages favor triplets of motifs that

contain 2 motifs with 2 beads and 1 motif with 3 beads, while the remaining villages favor

triplets of motifs that contain 1 motif with 2 beads and 2 motifs with 3 beads. We avoided

triplets of motifs that contain either all length-2 or length-3 motifs because the pedagogical

sampling and strong sampling model do not make clearly distinguishable predictions for

this subset of stimuli. The stimuli are: “10|010|011", “01|011|101", “01|10|010", “00|11|010",

“00|01|110" ,“01|11|101", “10|11|110", “00|011|100", “11|010|101" ,“01|101|110",“00|10|011",

“10|010|101", “11|001|011", “01|11|010", “01|10|101" , “00|100|101", “00|01|010", “01|010|101".

“1” represents orange beads and “0” represents green beads.
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3 Comparing learner performance to the baseline learner model

after exclusions
In the main text, we note that human learners sometimes reported motifs that were

inconsistent with the sample necklace they had received. It is possible that these trials

reflect instances where participants were inattentive or made typing errors. Therefore, as an

exploratory analysis, we also compared human learners’ performance to the baseline learner

model after excluding these trials. After excluding the 30% of the trials where the inferred

motifs were not consistent with the example necklace, we overall saw a slight improvement

in learners’ performance compared to the learner baseline model. On average, participants

recovered approximately one of the three motifs specific to each village (mean(SE) number

of motifs: 1.091(0.015)) and produced necklaces that were less than one bead away from an

acceptable necklace (mean(SE) minimum edit distance: 0.506(0.011)). The baseline learner

recovered approximately one of the three motifs specific to each village (mean(SE) number

of motifs: 1.163(0.007)) and produced necklaces that were less than one bead away from

an acceptable necklace (mean(SE) minimum edit distance: 0.550(0.009)). After exclusion,

participants still reported fewer correct motifs than the learner baseline if the examples

were chosen by the models (all p < .05). However, if examples came from human teachers,

participants reported a similar amount of correct motifs as the baseline learner model (p =

.80). Participants also produced necklaces with similar minimum edit distances as the learner

baseline if the examples came from the pedagogical sampling model (p = .285). However, if

the examples came from the strong sampling model or human teachers, participants produced

necklaces with smaller minimum edit distances than the learner baseline (all p < .01).
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