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Abstract

We explore how people “bootstrap”, or reuse chunked action
sequences, to tackle complex problems, in a novel puzzle task.
In this task, participants perform sequences of actions to recre-
ate target shapes. In our experimental condition, participants
are trained on problems whose best solutions share a distinct
abstract action sequence, or schema. Meanwhile, a control
group trained on tasks of commensurate difficulty whose so-
lutions did not conform to this pattern. We find experimental-
condition participants outperform controls in a set of more dif-
ficult test puzzles whose solutions are compositional general-
izations of experimental group’s training tasks. Notably, the
experimental group outperformed controls even in “far trans-
fer” tasks that lacked surface similarity to training in both their
target shape and solution sequence. Our results provide a com-
pelling demonstration of the human ability to cache and reuse
abstract patterns, offering new insights into how humans ap-
proach complex problems that, naively, seem to demand a pro-
hibitive amounts of planning or trial and error.
Keywords: bootstrapping; problem-solving; chunking’
schemata; planning

Introduction
A characteristic feature of human cognition is our ability to
bootstrap: to flexibly reuse pre-existing concepts, skills or
solutions as components in the creation of new complex con-
cepts, skills or solutions. Understanding the cognitive and
computational basis of bootstrapping seems key to the puzzle
of how it is that we are able to invent and acquire complex
concepts and skills despite our limited working memory and
computational bandwidth.

Boostrapping in Learning
Bootstrapping has been studied in various cognitive domains,
particularly in conceptual development and language acqui-
sition. Carey (2004) explored bootstrapping in concept for-
mation by examining how children combine their knowledge
of counting sequences with their understanding of set sizes
to ‘construct’ an abstract functional concept of numbers. Pi-
antadosi et al. (2012) laid out a computational model of this
phenomenon based on the Probabilistic Language of Thought
framework, synthesizing this and other such insights as the re-
sult of recursively building upon primitive mental operations.
Bootstrapping off of Carey and Piantadosi’s work, Zhao et
al. (2024) further identified, and demonstrated experimen-
tally, that bootstrapping enables agents with limited compu-
tational resources to search deeply-nested concepts via prin-
cipled cache-and-use, learning complex compound concept

only if the examples are ordered in a way that allows the agent
to first infer and cache useful sub-concepts.

In language acquisition, bootstrapping refers to the pro-
cess by which children use one type of linguistic knowledge
to help infer another. For instance, Pinker (1984) and Gleit-
man (1990) showed that children use semantic and syntactic
contextual constraints to infer both grammar and word mean-
ings. More recently, Yang and Piantadosi (2022) argued, con-
tra Chomsky (1965), that bootstrapping enables language to
be learned from the ground up.

Boostrapping in Problem-Solving
Like in learning concepts and languages, people also reuse
previous solutions to solve later problems. Prior work has
highlighted how individuals define and transfer action sub-
sequences, or “moves”, to support efficient strategy develop-
ment. Catrambone (1998) emphasized the benefits of sub-
goal labeling in mathematical problem solving, showing that
explicit decomposition supports schema formation and trans-
fer. Interestingly, classical studies such as Luchins’ (1942)
water jug problem, also revealed how previously learned so-
lution sequences can hinder flexibility when applied over-
rigidly to new tasks, a phenomenon known as the Einstellung
effect (see also, Binz & Schulz, 2023).

We view bootstrapping in problem-solving as the process
where learners extend their earlier ideas and (sub)solutions
in the construction of more advanced problem-solving strate-
gies (Tian et al., 2020; Zhou et al., 2024). By doing so, we
align problem-solving with broader theoretical frameworks in
cognitive science, such as the ‘Language of Thought’ (LoT)
hypothesis, and classical theories of rule-based reasoning.
The LoT hypothesis, popularized by Fodor (1975), posits that
cognitive processes are structured like language, involving
mental symbols with defined syntax and semantics. Similarly,
symbolic reasoning theories described by Newell and Simon
(2007) emphasize the manipulation of symbolic representa-
tions to enable logical thinking beyond concrete experiences.

This view is also connected with several established cogni-
tive theories and research topics, including chunking (Gobet
et al., 2001), creative hypothesis generation (Bramley & Xu,
2023), and analogy (Gentner, 1983). Chunking consolidates
problem-solving steps into “chunks” of knowledge that can
be frequently redeployed, reducing cognitive load and accel-
erating performance in settings where the steps are reusable



(Blessing & Anderson, 1996; Newell, 1990) . The fact that
smaller chunks can be combined hierarchically into larger,
more complex ones, captures one of the core ideas of boot-
strapping. For example, Ho and Liausvia’s (2013) study
on incremental rule chunking for problem-solving exempli-
fies this process, showing how chunked rules can be used
to tackle more complex problems by narrowing the search
space and offering efficient sub-steps. Similarly, creative gen-
eration of new ideas is characterized by a process whereby
we stochastically combine and recombine primitive elements
into new representations (Lake et al., 2017). Tian et al. (2020)
highlight the role of compositionality in developing struc-
tured internal representations that allow for flexible reason-
ing and learning in a character-drawing task, while Rubino
et al. (2023) find people perform this kind of compositional
reasoning even under time pressure. Moreover, the analogi-
cal reasoning literature records situations where people seem
to recognize re-usable structure and associated insights and
deploy it in analyzing new domains (Lovett & Forbus, 2017).
For example, Kim et al. (2020) demonstrated that analogi-
cal reasoning can be used to solve Ravens Progressive matrix
puzzles with few examples.

Despite the richness of boostrapping in problem-solving,
much of the existing research on problem-solving has focused
on specific aspects (e.g., strategy formation, knowledge trans-
fer, or skill acquisition) and has rarely directly measured the
level of bootstrapping with purpose-designed behavioral ex-
periments. This lack of empirical evidence limits our under-
standing of the underlying mechanisms that enable individ-
uals to solve complex problems. To address this gap, the
present study investigates bootstrapping processes in an un-
familiar problem-solving context. Using a novel computer-
based puzzle-solving task, we explore how individuals ex-
tract solution schema from simple tasks and apply them in
more complex ones. We then argue that this paradigm holds
promise for advancing research in human cognition and in-
forming the development of adaptive AI systems capable of
iterating toward solutions to complex problems.

The Geometric Puzzle Task
Task Interface and Rationale
We designed a computer-based puzzle-solving task to ex-
amine bootstrapping processes in problem-solving. Partici-
pants were required to construct target shapes using L-shaped
pieces. They did this within a 9× 9 grid where both x and y
coordinates wrapped around, such that position (N

2 + 1, N
2 +

1) was (−N
2 ,−

N
2 ). Participants could combine the L-shaped

pieces through sequential use of four operations: (1) Adding
an upright puzzle piece in the center of the current view of
the grid (pressing the “L” key), (2) Rotating everything 90 de-
grees clockwise (“R” key), (3) Flipping everything horizon-
tally (“F” key), (4) Moving everything in a cardinal direction
(arrow keys) (see Figure 1). Since moving the arrangement
did not alter the shape or orientation, and solutions did not
need to be centered within the grid to be correct, only the

Figure 1: Task interface: (a) Empty grid, with red square in-
dicating the center of the grid; (b) Pressing the “L” key to
add an L-shaped piece to the center of the grid; (c) Pressing
the “F” key to flip the L-shaped piece horizontally; (d) Press-
ing the “R” key to rotate the piece 90 degrees clockwise; (e)
Moving the piece using arrow keys (←, ↑, →, ↓)

“L”, “R”, and “F” operations were counted as critical steps
in later hypotheses and analyses. Crucially, all operations
apply to the entire shape created so far, demanding careful
forethought to produce a sequence that recreates a target pat-
tern. As target shapes grow in complexity, the need for se-
quential strategy planning increases, elevating memory load
and task difficulty. This task design provides a novel con-
text with minimal reliance on prior knowledge, where par-
ticipants must find ways to combine simple operations into
complex solutions. This deceptively simple design enables
precise measurement of learning, efficiency, as well as reuse.

Task Design: Training and Testing Phases
The experiment consisted of a training phase and a test-
ing phase, manipulating the content of the Training phase
in two between-subject conditions. Both conditions in-
cluded five training tasks. During training, the experimen-
tal group completed three tasks where the target shapes in-
volved two L-pieces (see Figure 2A). The optimal solution
sequence required adding a L piece (key L), rotating the
entire configuration (R), moving it (M), and repeating the
addition (L) and rotation (R). Concretely, Task 1e requires
L+R+M(←×3,↑×1)+L+R, Task 2e L+R+L+R, and Task 3e

L+R+M(↑×2)+L+R. These tasks emphasized a critical solu-
tion schema: rotating the entire configuration after adding
the second piece. This schema is key for solving more com-
plex puzzles in the testing phase. We can represent this solu-
tion schema with a Regular Expression (LRM*)+, reading as
one or more applications of a subsequence “L” followed by
“R” and then any number of “M” steps. The control group

https://regexr.com/


completed three tasks of similar complexity (see Figure 2B),
where the optimal solutions involved flipping instead of rotat-
ing (Task 1c: L+F+M(→×2,↓×2)+L, Task 2c: L+F+M(↓×1)+L,
and Task 3c: L+F+M(→×2)+L). This design ensured a simi-
lar level of mental manipulation difficulty without recursively
manipulating the entire configuration. The number of black
squares in the target shapes (and hence the amount of over-
lap of the pieces) was designed to match between groups. In
addition, both groups completed two final training tasks (see
Figure 2C) to ensure equal proficiency in rotation (R) and
flipping (F) operations. Task 4 required rotating a single L-
shaped piece three times, and Task 5 required flipping it once.
Additionally, the interface included a “Clear all” button to al-
low participants to reset the grid if they made a mistake or got
stuck. This button could be used as many times as needed;
however, participants were required to solve each puzzle suc-
cessfully before proceeding to the next one.

In the test phase, participants had a single opportunity to
recreate each target shape without the “Clear all” button, re-
quiring careful planning before starting. They could move
to the next task by clicking a “Next” button, with an addi-
tional bonus for completing tasks using the minimal num-
ber of critical steps. Both groups completed the same four
tasks. The tasks were designed to be of similar complex-
ity (and to exceed the complexity of the training problems).
Specifically, all test problems required the addition of least
three L-pieces, resulting in a target shape composed of nine
black squares (see Figure 3). Test task 1 could be solved most
efficiently with the sequence L+R+M(↑×2)+L+R+M(↑×3)+L
which reflected the “(LRM*)+” schema from the experimen-
tal groups’s training tasks. Additionally, Task 1 included
shape components familiar to both groups from their respec-
tive training Task 3. Task 2 employed the same optimal
solution sequence (L+R+M(↑×2,←×1)+L+M(←×2)+L) but dif-
fered in the movement steps, meaning it did not involve re-
producing or adding to a shape familiar from the training
phase. Task 3 required a slight variation in the solution
(L+R+R+M(↑×2)+L+R+M(←×3,↑×1)+L), requiring a third ro-
tation, but crucially all still conform to other, slightly broader,
schema such as “(LR*M*)+”. Task 4 had a different op-
timal solution sequence: L+R+M(↑×2,←×1)+L+F+M(↑×1)+L,
combining both rotation and flipping. This task maintained
only an abstract structural similarity to the training tasks, fol-
lowing a recursive add-transform-move pattern where trans-
formations could involve either rotation or flipping (i.e. a
“(L(R|F)*M*)+” schema). The order of test tasks was ran-
domized to control for practice effects.

Hypotheses
Grounded in the theoretical framework of bootstrapping and
its potential role in problem-solving, we propose the follow-
ing hypotheses:

H1: The experimental group will demonstrate greater
problem-solving efficiency than the control group in the test
phase, as evidenced by (a) higher success rates, (b) fewer crit-
ical steps (L, R, F) to complete tasks, and (c) shorter com-

Figure 2: Training phase Tasks: (a) Experimental Group
Tasks: 1e-3e (b) Control Group Tasks: 1c-3c (c) Common
Training Tasks: 4-5.

Figure 3: Test phase tasks

pletion time. This prediction assumes that the experimental
group acquires a schema (e.g., the “(LR+M*)+”, effectively a
repeated addition-rotation strategy) during training (see Fig-
ure4). By reusing this schema, participants are expected to
solve the more complex problem-solving structures in the test
phase with greater efficiency.

H2: Within each group, we predict that participants will
perform better on Test task 1 than on other test tasks, reflect-
ing the principle of near-structure mapping in analogy (Gen-
tner, 1983). Task 1 contains compound shapes familiar from
both groups training tasks, potentially cuing them to build on
whatever strategies they developed during training. However,
we expected the experimental group to exhibit a smaller de-
cline in performance across test Tasks 2-4, owning to their
ability to generalize the schema acquired during training, po-
tentially even to the farthest transfer required in Task 4.



Figure 4: Schema formed by the experimental group in the
training phase: a repeated rotation strategy ((LR*M*)+)

Methods

Participants

One-hundred and sixty-six participants (M age = 31.4, SD =
10.58; 77 females) were recruited from Prolific Academic.
Four participants were excluded for low effort or missing
data. The control group had 80 participants, and the exper-
imental group had 82. Eligibility criteria included ages 18-
55, UK or US residency, English as a first language, and a
minimum education level of high school diploma or A-levels.
Participants received a base payment of £1.80, with additional
bonuses for correct task completion in the test phase (£0.30
per task and £0.50 for completing tasks using the minimum
number of critical steps). The entire experiment, including
instructions, tasks, and a brief questionnaire, took an average
of 19.84 minutes (SD = 13.97).

Procedure

Participants were randomly assigned to either the experimen-
tal or control group. The experiment began with instruc-
tions on the task interface, followed by a hands-on prac-
tice session to familiarize participants with operations (L,
R, and F keys). Participants were encouraged to add mul-
tiple L-pieces to explore these transformations. After pass-
ing a comprehension quiz, participants proceeded through
the training and testing phases. Each phase was preceded
by specific instructions and a corresponding comprehension
check. After the tasks, the participants answered demo-
graphic questions and provided feedback on their experi-
ence, including engagement, perceived difficulty, and help-
fulness of the training phase. A live demo is available at:
eco.ppls.ed.ac.uk/ s2592856/exp/task.html.

Results

The results section is organized into five parts: (1) com-
parison of overall task completion between groups, (2) de-
tailed analysis of problem-solving efficiency across tasks, (3)
within-group performance comparisons using mixed models,
(4) analysis of schema formation and reuse through sequence
patterns and transition probabilities, and (5) subjective ratings
of perceived helpfulness of the training.

Overall Task Completion
The experimental group significantly outperformed the con-
trol group in terms of overall task completion. A Mann-
Whitney U test revealed that participants in the experimen-
tal group (Mdn = 1, IQR = 0–2.75) completed more tasks
correctly than those in the control group (Mdn = 0, IQR
= 0–1), W = 2097, p < 0.001, with a moderate effect size
(r = −0.36) calculated by the rank-biserial correlation. Fig-
ure 5 displays the distribution of successfully completed tasks
across groups.

Figure 5: Comparison of success rate across tasks for Control
and Experiment groups

Problem-Solving Efficiency for Each Task
To evaluate problem-solving efficiency, we analyzed perfor-
mance metrics across tasks, including success rates, comple-
tion time, and the number of critical steps. Success rates
were treated as the primary indicator, as they directly reflect
performance accuracy. Completion time and critical steps
were considered as supplementary measures, given the lim-
ited number of participants who completed the tasks correctly
in both groups. All analyses were conducted after removing
outliers using the interquartile range method (IQR).

χ2 test results and effect size for task completion in control
and experimental groups are presented in Table 1 . χ2 tests
revealed that the experimental group consistently achieved
higher success rates across all four tasks compared to the
control group (see Figure 5). The most pronounced differ-
ence was observed in Task 2, where the experimental group’s
higher success rate resulted in a large effect size (h = 0.67),
while other tasks showed medium-to-large effects sizes (h =
0.35–0.44).

There were no significant differences between the groups
in completion time or the number of critical steps for most
tasks, as indicated by t-tests and Mann-Whitney U tests.
However, one exception occurred in Task 2. The t-test
showed that the experimental group (M = 21.45,SD = 10.01)
took significantly more critical steps than the control group
(M = 11.44,SD = 4.45) to successfully complete the task,
t(27.04) =−3.70, p = 0.001,95%CI[−15.56,−4.45].

https://eco.ppls.ed.ac.uk/~s2592856/exp/task.html


Table 1: Chi-Square Test Results and Effect Sizes for Task Completion in Control and Experimental Groups.

Task Control (n, %) Experimental (n, %) χ2 df N p-value Effect
size (h)

Task1 21(26.25%) 35(42.68%) 4.41 1 162 0.042 0.35
Task2 9(11.25%) 32(39.02%) 15.09 1 162 <0.001 0.67
Task3 16(20.00%) 30(36.59%) 4.69 1 162 0.030 0.37
Task4 14(17.50%) 30(36.59%) 6.52 1 162 0.011 0.44

Comparison of Performance Across Tasks in the
Testing Phase
We used generalized linear mixed models (GLMMs) to as-
sess whether performance on Task 1, which incorporated fa-
miliar shapes from training, was superior to performance on
Tasks 2–4 within each group. The models were fitted using
the lme4 package in R (version 4.2.2), specifying a binomial
distribution with a logit link function. The dependent vari-
able was participants’ binary task outcomes ∈(1:Success, 0:
Failure). Task (Task 1 vs. Other) was entered as a fixed ef-
fect, and participant ID as a random effect. In the control
group, performance on Task 1 was significantly better than
that on other tasks (β = −1.80,SE = 0.61,z = −2.96, p =
0.003), with odds of success 6.1 times higher. No signif-
icant difference was found in the experimental group (β =
−0.33,SE = 0.31,z =−1.06, p = 0.29). Random effects ac-
counted for individual variation (control: SD = 7.53; exper-
imental: SD = 1.61), and model fit indices supported the
model adequacy (AIC/BIC: control = 227.30/238.60; experi-
mental = 405.70/417.10).

Schema Formation and Reuse Patterns
We conducted a series of analyses to examine how partici-
pants formed and reused patterns acquired during training.
First, regular expressions were used to detect transfer mo-
tifs in participants’ action sequences. For near transfer tasks
(Tasks 1–3), we applied the regular expression (LRM*)+ to
identify patterns involving one or more repetitions of the se-
quence “L” followed by“R” then zero or more “M”s. For the
far transfer task (Task 4), we used the pattern (L(R|F)M*)+,
allowing for “L” followed by either “R” or “F” and zero or
more “M”s to capture more flexible reuse strategies. Across
all tasks, the experimental group showed significantly higher
schema reuse than the control group. In Task 1, a t-test re-
vealed a significant difference between the experimental and
control groups, t(157.27) = −2.23, p = 0.027. Similar sig-
nificant differences were found in Task 2, t(158.34) =−3.51,
p < 0.001; Task 3, t(144.7) =−3.70, p < 0.001; and Task 4,
t(149.64) =−3.69, p < 0.001. These results suggest that the
experimental group was more likely to apply schemas learned
during training than the control group.

We further compared the predictive accuracy of partici-
pants’ test-phase sequences using base action probabilities
and transition probabilities derived from the training phase.
In the experimental group, prediction based on training-phase

transitions was significantly more accurate than predictions
based on the overall action frequencies, t(158.02) = −2.30,
p = 0.023. The same pattern emerged for the control con-
dition, t(153.76) = −3.33, p < 0.001. Figure 6 displays the
proportion of action transitions by condition and phase, high-
lighting that the L–R–M sequence was more prevalent in the
experimental training condition than in the control condition.
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Figure 6: Proportions of action selections and transitions
(omitting self transitions) by condition and phase.

Helpfulness
At the end of the experiment participants rated the perceived
helpfulness of the training phase for completing the testing
phase tasks on a 1-5 scale, with higher scores indicating
greater perceived utility. Results showed that participants
in the experimental group rated the training as significantly
more helpful than those in the control group (Mdn = 3.62 vs.
3.01, U = 2217, p = 0.002). A mediation analysis using the
lavaan package in R showed that success rate partially medi-
ated the effect of training condition on perceived helpfulness
(indirect effect: b= 0.31, SE = 0.09, z= 3.40, p= .001, 95%
CI [0.15, 0.51]; direct effect: b = 0.30, SE = 0.15, z = 2.00,
p = .046, 95% CI [–0.01, 0.57]). The total effect was also
significant (b = 0.61, SE = 0.16, z = 3.88, p < .001, 95%
CI [0.28, 0.92]). All coefficients reported were standardised.
These findings indicate that although success rate partially



mediated the effect of training condition on perceived help-
fulness, the significant direct effect suggests that the train-
ing itself contributed to perceived helpfulness beyond perfor-
mance outcomes.

Discussion
Our analysis of schema formation and reuse patterns revealed
that participants in the experimental group reused the schema
formed during training significantly more frequently than
those in the control group across all test phase tasks. This
indicates that they were able to effectively construct and gen-
eralize a problem-solving schema from a limited number of
training trials and apply it to solve both familiar and novel
complex problems. These findings are consistent with previ-
ous work. For example, Tian et al. (2020) demonstrated that
individuals can rapidly acquire abstract procedures that sup-
port generalization, while Lake and Piantadosi (2020) em-
phasized humans’ capacity to learn and reason about algo-
rithmic abstractions from limited data. Importantly, the pre-
dictive accuracy analysis showed that transition probabilities
derived from the training phase were better predictors of par-
ticipants’ test-phase actions than simple action frequencies.
This suggests that the experimental group’s superior perfor-
mance was not merely due to familiarity with rotation oper-
ations (i.e., R key usage) but rather reflected the successful
formation and flexible reuse of the problem solutions at an
abstract “schema” level.

Additionally, the experimental group achieved superior
performance on tasks that involved the reuse of solution
structures even at an abstract “schema” level. This im-
provement was not restricted to specific operation sequences
but reflected a broader capacity to apply learned problem-
solving strategies (the formed schema) to both familiar and
novel tasks. This demonstrates the power of bootstrapping
in enabling the development of flexible, adaptable cogni-
tive strategies that can be applied to a wide range of in-
creasingly complex problems. Notably, the consistent reuse
of the (LRM*)+ pattern in Tasks 1-3 and the adaptation of
the schema (L(R|F)M*)+ in Task 4 suggest that participants
in the experimental groupwere able not only to transfer the
schema but also to flexibly modify it to handle diverse tasks.

Contrary to our hypothesis, no significant differences were
observed between the experimental and control groups in
terms of completion time or the number of critical steps, ex-
cept for Task 2. In Task 2, the control group completed the
task using fewer steps on average. This finding is likely at-
tributable to the high overall task difficulty, as reflected by the
low success rates (40% for the experimental group, 20% for
the control group) and participants’ subjective ratings of task
difficulty (average score around 8.5 on a 0-10 scale). Despite
being instructed to minimize steps, participants appeared to
prioritize task completion over step optimization. The con-
trol group’s apparent efficiency in Task 2 is likely explained
by the small number of successful participants (n = 9), who
potentially possessed above-average spatial problem-solving

abilities, thereby complicating direct comparisons between
groups.

Comparing performance across tasks within each group,
we found that the experimental group showed no significant
difference in success rates across all tasks, whereas the con-
trol group performed significantly better on Task 1 compared
to the others. Task 1 featured a familiar target shape from
training. For the control group, this familiarity appeared
to facilitate problem-solving. In contrast, the experimental
group’s consistent performance across tasks was likely driven
by the reuse of the schema (i.e., an overall rotation strat-
egy) formed during training, rather than shape recognition or
memorization. These findings challenge traditional views of
chunking, which typically emphasize its role as a memory aid
for specific problems (Sakai et al., 2003; Servan-Schreiber &
Anderson, 1990; Thalmann et al., 2019; Wu et al., 2023). Our
results suggest that in addition to forming reusable chunks,
bootstrapping also involves the abstraction of schemas. Un-
like transferring learned chunks—which relies on the recog-
nition of identical elements, bootstrapping fosters the creation
of broader, more flexible cognitive structures, as testified in
the cognitive development literature (Carey, 2004; Rule et
al., 2020). Furthermore, the experimental group’s lack of a
performance boost on Task 1 (compared to other tasks for the
experimental group), may imply a trade-off between general-
izable problem-solving and task-specific familiarity.

Our study also has several limitations that invite future in-
vestigations. The moderate success rate we observed is likely
due to the high difficulty of the testing phase, especially in the
control group, which may have limited our statistical power.
Increasing the sample size or adjusting the test phase task dif-
ficulty, such as by allowing multiple attempts, could help mit-
igate this. Future studies could also explore the metacognitive
aspects of problem-solving, such as how quickly individuals
recognize unsolvable tasks, or how time constraints influence
the bootstrapping process, roviding further insights into how
strategies are formed and adapted in dynamic contexts. More-
over, we hope to investigate group problem solving settings
where recognition of successful strategies in others’ may help
parallelize the search problem for good solutions, while col-
laborative problem solving might foster division of labor and
specialization (Almaatouq et al., 2021).

In sum, our study adds to the literature on problem solv-
ing (Gobet et al., 2001; Laird et al., 1984), contributing a
novel paradigm that allows the measurement of composi-
tional reuse. This task reveals how learners bootstrap strate-
gies from simpler components, shedding new light on theo-
ries of bootstrapping in cognitive development.
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