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Abstract

Successful innovation hinges on balancing exploring new ideas
and exploiting existing ones. A rational innovator should be
state-sensitive, effectively switching to exploitation when the
best available idea reaches some standard. We tackle inno-
vation with a discovery-by-recombination game under addi-
tive reward growth, and compare the optimal state-dependent
policy with a state-independent policy. Our experiment re-
veals that participants made state-dependent decisions, explor-
ing more in rounds with early successes, albeit being told of the
same true success probability. In contrast, the optimal state-
dependent policy switches to exploitation earlier. This sug-
gests that participants’ state-sensitivity may be driven by ad-
hoc subjective probabilities. Participants also deviated from
optimality through excessive exploration, switching multiple
times between exploration and exploitation, and their switch-
ing points also differed from the theoretical optimum.

Introduction
Innovation has long been a driving force behind the develop-
ment of human civilization. Ancient people combined nat-
ural objects to create tools. In modern science, new ideas
often stem from recombining existing knowledge (Uzzi et al.,
2013). A central question in this process is how a rational
agent should balance exploring new ideas with exploiting es-
tablished ones. This challenge is particularly relevant for sci-
entists choosing research topics (Huang et al., 2022). Ex-
cessive exploration may waste opportunities to reap rewards,
while premature exploitation risks suboptimal outcomes.

In this work, we study innovation strategies through recom-
bination within the discovery game framework (Zhao et al.,
2024). In a discovery game, an agent sequentially chooses
between fusing items (exploration) and extracting rewards
(exploitation). Zhao et al. (2024) analyzed the game under
exponential reward growth, where the optimal policy is in-
dependent of the best available item. However, exponential
growth fails to capture the constrained gains typical in com-
petitive innovation environments (Chu & Evans, 2021). We
instead adopt additive reward growth, leading to an optimal
policy that switches from exploration to exploitation based on
the current best item. We compare this state-dependent pol-
icy with a state-independent strategy, where a predetermined
switching point guides actions regardless of history.

We investigate whether humans are state-sensitive in the
discovery game with an online behavioral experiment. We
used a forced-choice paradigm with fusion outcome manipu-
lation to control the initial state of participants’ decisions. To

foreshadow, we found that participants made state-dependent
choices, exploring more in luckier rounds—both in their first
choice and throughout the game. This state sensitivity con-
trasts with the optimal strategy, suggesting that ad-hoc up-
dates of subjective probabilities may influence people.

Background
Exploration-exploitation trade-off
Humans constantly face the challenge of balancing between
exploring unknowns and exploiting the known rewards (Co-
hen et al., 2007; Mehlhorn et al., 2015; Sutton & Barto, 1998).
Exploration may benefit on the long-term reward, while ex-
ploitation emphasizesx short-term returns. Both excessive ex-
ploration and premature exploitation can result in suboptimal
results. A famous example is the optimal stopping problem
(Ferguson, 2006), where one sequentially accepts or rejects
the options. Rejected items cannot be revisited while accept-
ing terminates the process.

Optimal policies for the explore-exploit tasks seek a bal-
ance between the opposing sides. Previous work shows that
people could adopt a threshold-based strategy that depends
on the time left and the best options available, as does the
optimal policy (Baumann et al., 2020; Sang et al., 2020).
However, people often adopt a threshold lower than the op-
timal one (Baumann et al., 2020). They often switch be-
tween exploration and exploitation multiple times, and ex-
hibit sequence-level decision noise (Song et al., 2019). The
deviation from optimality is attributed to various factors, in-
cluding risk aversion (Bhatia et al., 2021) and the representa-
tion of the problem (Baumann et al., 2025).

Innovation by recombination
Innovation rarely springs from pure originality (Bramley et
al., 2023). Instead, new ideas often emerge through combin-
ing existing knowledge (Xiao et al., 2022), which in turn be-
comes the foundation for future breakthroughs. The game
of discovery by recombination formalizes this process as a
finite-horizon sequential decision process (Zhao et al., 2024),
where players choose between extracting immediate rewards
from items or fusing items to create potentially more valuable
ones. Initially, all items yield a base reward. Each success-
ful fusion increases the level of the best item and its reward.
Unlike traditional multi-armed bandit models (Reverdy et al.,



2013), which learn the values of items, the discovery game
captures how innovation expands the space of ideas through
recombination. The action space of the discovery game can
grow infinitely, while both the value of items and the chance
of a successful fusion are explicitly known.

The reward growth assumptions critically influence the op-
timal policy. Zhao et al. (2024) assumed exponential reward
growth, where the item reward scales exponentially with its
level. In this case, both the marginal value of fusion and its
opportunity cost are linear in the reward, rendering the op-
timal policy dependent solely on the time left. As we show
in the following section, this property does not hold under
additive reward growth. When each successful fusion adds
a constant to the reward, the marginal value of exploration is
constant, while the opportunity cost grows with the item level,
making the optimal policy depend on the highest item level.
In the next section, we analyze the optimal state-dependent
policy and compare it with its state-independent counterpart
in more details.

The Additive Discovery Game
Following Zhao et al. (2024), we formalize “ideas” as items
and “innovation” as an attempt to fuse existing items for new
ones. Players can also extract immediate rewards from an
existing item. A successful fusion produces a new, more re-
warding item, which players can exploit in future rounds by
extracting rewards from it.

Markov decision process (MDP) model
The discovery game is modeled as a Markov decision process
(MDP) G “ pT,M,A,P,Rq, where T P N` is the horizon, M
is the set of possible items, A is the set of actions, P is the
transition function, and R is the reward function. In each
round t P rT s, player observes the available items Mt Ď M,
selects an action at P A, receives a reward rt “ Rpst ,atq, and
transitions to the next state according to Ppst`1|st ,atq. Below,
we detail the key components of the MDP.

State At time period t P rT s, the state st P S Ă N tracks the
highest item level, which indicates the number of success-
ful fusions leading to that item. Initial items start at level 0.
This simplification of Mt relies on the fact that, for a ratio-
nal player, it is sufficient to focus only on the most rewarding
items when making decisions.

Action The action space A “ textract,fuseu is also sim-
plified by removing strictly dominated actions. At time pe-
riod t, the agent at state st can either extract from the best
item in Mt (of level st ) or fuse it with another item.

Transition When the player selects at , the system transi-
tions from st to st`1 according to P. The highest-level item
remains unchanged unless the player chooses fuse and the
fusion succeeds. A successful fusion increases the level of

the best item by one. We assume the probability of success-
ful fusion is homogeneous: fuse succeeds with probability
p, p P p0,1q. Formally,

Ppst`1 “ st |st ,at “ extractq “ 1
Ppst`1 “ st |st ,at “ fuseq “ 1 ´ p

Ppst`1 “ st ` 1|st ,at “ fuseq “ p
(1)

Reward The reward function R describes the instant re-
ward of each action at each state. Fuse leads to 0 instant
reward. Extract collects a state-related reward. Each initial
item of level-0 yields a base reward r. Each successful fusion
increases the item reward by a constant amount r̃ P R from
the best original items. One can extract rk “ r ` kr̃ from a
level-k item. For simplicity, we let the constant r̃ equal the
base reward r. This assumption does not affect the structure
of optimal policy. Formally,

Rpst ,extractq “ rpstq ≜ pst ` 1q ¨ r

Rpst ,fuseq “ 0
(2)

Optimal state-dependent policy
Given the formal specification of MDP, an optimal policy
π˚ : rT sˆS Ñ A can be derived through backward induction.
Bellman optimality equation suggests

q˚pst ,atq “ Rpst ,atq`
ÿ

st`1PS

Ppst ,at ,st`1q max
at`1PA

q˚pst`1,at`1q

(3)
At the last period T , q˚psT ,extractq “ rpsT q,
q˚psT ,fuseq “ 0. Working backward gives the optimal
state-action q-value function (see fig. 1 for an example). At
each time period t, the optimal policy follows the action with
the highest q-value

π
˚pstq “ argmax

aPA
q˚pst ,aq. (4)

The optimal policy has a special structure of “switching
once”, as stated in theorem 1. It never returns to exploration
once it starts exploitation. Moreover, the timing of this switch
is not fixed—it depends on the current best item.

Theorem 1. The optimal state-dependent policy switches at
most once from exploration (fuse) to exploitation (extract).
The switching point is state-dependent.

π
˚pstq “

"

fuse, t ď T ´
st `1

p ¨

extract, otherwise.
(5)

Proof sketch. Here, we provide the intuition for the proof. A
complete proof is presented in the appendix. We first prove
the “switch-once” property by construction. A policy gen-
erates a sequence of actions for any transition outcomes. In
expectation, any action sequence that switches back from ex-
ploitation to exploration is dominated by one that swaps the
later exploration with exploitation. Thus, the optimal policy
must satisfy the “switch-once” property.
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Figure 1: Value function and the optimal state-dependent pol-
icy for p “ 0.6, T “ 10. The switching point from exploration
to exploitation depends linearly on the state. In this example,
the optimal state-independent τ˚ “ 4.

Given the “switch-once” property, the switching point can
be derived by comparing exploration and exploitation at each
time period. It is better to explore if the value of exploration
exceeds its opportunity cost

rppst ` 2q ` p1 ´ pqpst ` 1qsr ¨ pT ´ tq ě pst ` 1qr ¨ pT ´ t ` 1q

ô t ď T ´
pst ` 1q

p

Optimal state-independent policy

Evaluating the opportunity cost for every step can be com-
putationally extensive, and thus decision-makers could alter-
natively follow a pre-determined plan throughout the game.
Given a game G, the state-independent policy πτ : rT s Ñ

A,τ “ 0,1, ...,T explores for τ periods, and then switches to
exploitation.

πτpstq “

"

fuse, t ď τ

extract, τ ă t ď T (6)

The optimal state-independent policy chooses τ˚ to maximize

Vτ ≜ Eτ

«

T
ÿ

t“1

Rpst ,atq

ff

“ pT ´ τqE rp1 ` sτ`1qs (7)

where sτ`1 „ Bpτ, pq is a Binomial random variable whose
distribution depends on τ. Optimality is reached at

τ
˚ “

T p ´ 1
2p

“
T
2

´
1

2p
. (8)

Equation 8 suggests that the optimal switching point is just
before T

2 , the middle of the horizon. This simple rule can
be applied without tracking the current best item, and still
reaches optimality if played in many independent games.
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Figure 2: Switching time period of optimal state-dependent
and state-independent policy.

Policy comparison
To illustrate the influence of state-sensitivity, we run the dis-
covery game for NS “ 1000 independent rounds with game
parameters p “ t0.2,0.5,0.8u and T “ t5,10,15u. The
switching point of the optimal state-dependent policy is dis-
tributed around the state-independent one (fig. 2). It explores
more and switches later when p is lower or the horizon T
is longer. The difference in rewards collected by the two
policies is not significant. The optimal state-dependent pol-
icy yields a higher expected reward but also greater variance
when p is lower (see appendix, table 2).

Most distinctively, the state-dependent policy extends ex-
ploration when the best item is not rewarding enough and ter-
minates earlier otherwise. In contrast, the state-independent
policy averages over these scenarios, resulting in switch-
ing points that are approximately at the mean of the state-
dependent policy’s switching points.

Empirical Evaluations
We investigate whether people make similar state-sensitive
decisions in an online behavioral experiment. The experiment
is pre-registered at https://aspredicted.org/w72s-rc2f.pdf.

Experiment
To focus on cases where the state-dependent and state-
independent optimal policies make different predictions, we
used a forced-choice paradigm to manipulate the state at
which participants start to make autonomous decisions. We
designed state-time pairs pt0,st0q where t0 is at the state-
independent optimal switching point τ˚, but st0 can either
reach the state-dependent switching threshold or not yet. If
people are state-sensitive, they should choose to exploit at
t1 when st0 exceeds the threshold, and keep exploring if st0
has not yet reached the threshold. A state-independent agent,
however, would always switch to exploit at t1 regardless of
the value of st0 .

https://aspredicted.org/w72s-rc2f.pdf


Figure 3: Experiment interface implemented in a survey system. The screenshots display one round of discovery game in the
experiment. Arrows and bold text are for illustration only and not shown to participants. Each participant experiences 4 rounds
with forced-choices and free-choices (“lucky” or “unlucky” type), and another 4 rounds with free-choices only (“free” type).

Participants 200 participants are recruited through Prolific
Academic (86 females, Mage “ 35 ˘ 12). The median task
completion time was 16 minutes. The sample size was de-
termined by a power analysis aiming to obtain .95 power
to detect an effect size of .3 at .05 alpha level. As pre-
registered, thirty-one participants were excluded because they
chose fuse for all the trials within a round. Participants were
paid both for their time and a performance-based bonus. The
experiment was approved by the Tsinghua University Sci-
ence and Technology Ethics Committee (project no. THU-
04-2025-003). All participants gave informed consent before
undertaking the experiment.

Procedure After reading the instructions and passing a
comprehension quiz, each participant completed eight rounds
of independent discovery games (fig. 3), choosing between
fuse and extract. A successful fusion builds upon the best
item, increasing its value by one unit. Extraction does not
change the item values. The eight rounds were arranged in
two blocks, and each block had four rounds of the same game
type (see the Design section). Each round was divided into
two stages, a forced-choice stage (t “ 1, ..., t0 ´ 1) and a free-
choice stage (t “ t0, ...,T ). During the forced-choice stage,
participants were instructed to select fuse, and—unknown
to the participants—the outcomes were predetermined by the
experimenters. Participants began making autonomous deci-
sions at t0, marking the start of the free-choice stage. The
participants are asked to make choices for all subsequent ac-
tions at t0, allowing us to observe both their choices at the on-
set of the free-choice stage and their plans for the subsequent
actions. We compare the chosen actions at t0 with the state-
dependent optimal policy. Participants were informed of the
horizon T and the success probability p before each round.
After the blocks, we collected participants’ subjective eval-
uation of the success probability, together with demographic
information and feedback.

Design To test state-sensitivity, we designed three game
types: lucky, unlucky, and free (table 1). In the lucky games,

Horizon T 5 10 15 20

“Lucky” type game (2, 1) (4, 3) (7, 5) (9, 6)
“Unlucky” type game (3, 0) (5, 1) (8, 2) (10, 4)

“Free” type game (0, 0) (0, 0) (0, 0) (0, 0)

Table 1: Time-state pairs (t0, st0 ) selected for “lucky”, “un-
lucky” and “free” type games of different horizons.

participants observed relatively more success outcomes in the
forced-choice stage, and therefore started their free-choice
stage with more valuable items. The unlucky games, on the
contradictory, gave more null outcomes during forced-choice,
and left the participants relatively low-value items when the
free-choice stage began. Free games have no forced-choice
stage, and participants made their own decisions for the en-
tire round.

Each participant was randomly assigned to one of the four
between-subject conditions: free-lucky, free-unlucky, lucky-
free, and unlucky-free. Here, each game type represents a
block of four rounds of games of that type, with varying
T “ 5,10,15,20. The order of horizons was randomized
within each game type block to control for potential order
effects. To mitigate the potential effect of successive failures,
two transition sequences are selected for the “unlucky” states
in games with horizon T “ 10,15,20. For all conditions, the
fusion success probability is held constant p “ 0.6, and ex-
plicitly communicated to the participants throughout.

Results
Participants’ decisions were state-dependent, but in the
opposite direction of optimality. Participants demon-
strated sensitivity to the initial state at the start of the
free-choice stage. Game type predicted the proportion of
exploration (fuse) in the free-choice stage (game type:
Fp2,2019q “ 333.81, p ă .001, Cohen’s f “ 0.571). How-
ever, contrary to the predictions of the optimal state-
dependent policy, participants actually explored more in the
“lucky” games than in the “unlucky” games (fig. 4a). Fo-
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Figure 4: Participants’ decisions for the discovery games. (a) Boxplot of the proportion of exploration (fuse) in participants’
action sequences across different types of games with different horizons. (b) Number of switches from exploration to exploita-
tion in “free” type games. The black regression line illustrates the increasing trend with the horizon. (c) The distribution of
participants’ switching points in “free” type games. The percentage numbers following the horizon indicate the proportion of
participants that switched once for the “free” type game. The yellow star indicates the theoretical optimal switching point.

cusing on the first action after the forced-choice stage, game
type also influenced the proportion of participants who chose
to explore (game type: Fp1,672q “ 3.782, p “ .052, Cohen’s
f “ 0.0748). More participants chose fuse as the first action
in “lucky” than in “unlucky” type games, especially when the
horizon is short.

State-dependency might result from subjective probabil-
ity Although participants were explicitly informed p “ 0.6,
they may internally update their beliefs based on the observa-
tions. We collected probability estimations after the “lucky”
or “unlucky” type games in a debrief question for explorative
purposes. The preceding game type significantly influenced
the estimated success probability p (game type: Fp1,167q “

76.701, p ă .001, Cohen’s f “ 0.677). The average esti-
mation was below 0.6 for the “unlucky” type games (mean:
0.455; tp82q “ 7.822, p ă .001, Cohen’s d “ 0.859) while
above 0.6 for “lucky” type games (mean: 0.657; tp85q “

4.101, p ă .001, Cohen’s d “ 0.442). The updated probabil-
ity estimate may subsequently influence participants’ choices.
For participants in the “lucky-free” and “unlucky-free” con-
ditions, the probability estimation predicted the proportion of
exploration in the following “free” type games (estimation:
Fp1,381q “ 9.014, p “ .003, Cohen’s f “ 0.153). The pro-
portion of fuse increases with the estimated p̂ (estimation:
β p̂ “ 0.209, tp381q “ 3.002, p “ .003).

Game order influences free-choice strategies Game or-
der also significantly affects the choice patterns in “free”
type games (game order: Fp3,668q “ 7.407, p ă .001, Co-
hen’s f “ 0.182). Participants explored more in the “lucky-
free” order than in the “free-lucky” order (Tukey’s HSD:

p “ .004) and more in the “unlucky-free” order than in the
“free-unlucky” order (Tukey’s HSD: p “ .050). This effect
cannot be explained by subjective probability, because the
“unlucky” rounds led to lower perceived success probability,
and thus would lead to lower rate of exploration. In contrast,
participants who first encountered these “unlucky” games ac-
tually explored more in subsequent “free” games, compared
to those who started with “free” games right away.

Participants’ plans deviate from optimality Participants
exhibit excessive exploration in both “lucky” (tp343q “

22.817, p ă .001, Cohen’s d “ 1.230) and “unlucky”
(tp331q “ 14.580, p ă .001, Cohen’s d “ 0.800) games,
where the optimal policies suggest exploitation since the sec-
ond free choice. They also over-explored in “free” games
(tp899q “ 14.256, p ă .001, Cohen’s d “ 0.475). The game
horizon T influenced the proportion of exploration (horizon:
Fp1,2019q “ 8.303, p “ .003, Cohen’s f “ 0.055). Partici-
pants explored slightly more in games with longer horizons.
(fig. 4a, βT “ 0.0034, tp2019q “ 1.937, p “ .053).

When focusing on the “free” games, participants can
switch more than once, and the number of switches grows as
the horizon increases (fig. 4b). For participants who switched
once and exploited until the end, their switching points are
distributed across the horizon (fig. 4c). The multi-modal pat-
tern of the distribution implies notable heterogeneity in par-
ticipants’ strategies. Besides those who switched near the
theoretical optimum, some chose to fuse until the second-
to-last action and extract once, while others may extract
throughout the entire game.

To evaluate participants’ decisions, we sampled 1000 se-
quences of transitions and calculated the cumulative rewards.
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Figure 5: The expected cumulative reward over 1000 simulated outcome sequences. Each grey point shows the mean reward
collected by a participant. The black point shows the human average performance with 95% confidence interval. The blue
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We compared the participants’ plans against random choice
baseline (50% fuse, 50% extract) and the optimal poli-
cies (fig. 5). Most participants outperform the random base-
line (tp1335q “ 4.897, p ă .001, Cohen’s d “ 0.134) but
underperform the optimal state-dependent policy (tp1335q “

32.320, p ă .001, Cohen’s d “ 0.884) and the optimal state-
independent policy (tp1335q “ 31.478, p ă .001, Cohen’s
d “ 0.861).

Discussion
Successful innovation requires balancing exploring a vast
combinatorial space of ideas with exploiting the established
ones. The current study investigates innovation strategies the-
oretically and empirically using the additive discovery games
framework. A rational innovator would exploit more in luck-
ier rounds once an idea meets the time-dependent threshold.
We find that participants indeed made state-sensitive deci-
sions, but explored more after successful outcomes, which
could be attributed to subjective probability updates. Partic-
ipants’ strategies also deviated from the theoretical optimum
with excessive exploration, multiple switches between explo-
ration and exploitation, and divergent switching points.

The current work has several limitations that future work
could address. The experiment interface collects decisions
for multiple steps in an one-off fashion. In future work, we
aim to develop a more flexible and natural paradigm with iter-
ative feedback to better assess decision rationality. Currently,
the optimal policies use the informed p as ground truth. Un-
expected outcomes are treated as incidental. In contrast, par-
ticipants updated their subjective beliefs about p. This strat-
egy can be more robust in real-world environments without
perfect information. As a future direction, we may incorpo-
rate belief updates into the model, modeling how people learn
about a latent p through the progress of the game (Lai & Rob-
bins, 1985; Lattimore & Szepesvári, 2020).

Another future direction is to explore how other reward

growth assumptions shape the optimal and human strategies.
For example, the reward after successful fusions could be the
sum of the rewards of the original items. Taking a step further,
we may introduce item features to parameterize the success
probability P and the reward R. This setup can capture the
difficulty of navigating the combinatorial space of candidate
ideas, which may ultimately limit the growth of knowledge
(Weitzman, 1998).

In the current task, deriving the optimal policies requires
integrating all possible outcome sequences, which is compu-
tationally intractable. Instead, people may resort to resource-
rational thinking (Lieder & Griffiths, 2020). For example,
participants might aim at satisficing instead of maximizing
(Caplin et al., 2011). Notably, despite the efforts to derive
them, both optimal policies are simple threshold-based deci-
sion rules. Instead of doing calculations, a decision-maker
with limited cognitive resources might learn these decision
rules through trial and error. Future work could investigate
the resource-rational approaches for the game, as well as the
role of learning throughout this process.
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Appendix
Proof for theorem 1
Proof. We first prove the ”switch-once” property by con-
struction. Now consider a given but unknown binary se-
quence of fusion outcomes ω “ to ju

T
j“1 P Ω, where o j stands

for the outcome of the j-th fusion. For a policy π : S Ñ A,
at “ πpstq. If at “ fuse, and it is the jt -th fuse until time t,
řt

τ“1 Iraτ “ fuses “ j, the transition is determined by

st`1 “ st ` o jt .

For any ω P Ω, π uniquely determines a sequence of actions
taπ,ω

t uT
t“1. If there exists t1 ă t2, such that aπ,ω

t1 “ extract,
aπ,ω

t2 “ fuse, we can construct another action sequence with

aπ1,ω
t “

$

&

%

fuse, if t “ t1,
extract if t “ t2,
aπ,ω

t , otherwise.
(9)

Comparing the two action sequences, only actions at t1 and
t2 are swapped. For any outcome sequence ω, the differences
between the rewards collected by the two action sequences
can only appear from t1 to t2. Since st1 ` o jt1

ě st1 , and other
parts of the sequences are identical, we can conclude that
the latter one collects equal or more reward. And since this
holds for any ω P Ω, taking an expectation over ω renders the
conclusion: for any action sequence, there exists an alter-
native sequence that switches at most once and achieves
equal or greater reward.

Now, the remaining issue is the existence of such π1, map-
ping each ω P Ω to an action sequence that exhibits the
”switch-once” property. This is resolved by construction. As-
suming the optimal π˚ satisfies the ”switch-once” policy, we
can derive it by greedily comparing fuse and extract. The
resulting π˚ is presented in eq. (5)

Simulation results
The simulation results for policy comparison are presented
here in table 2.

Experiment design details
We include the selected initial time-state pairs and the cor-
responding transition sequences used in our experiment in
fig. 6.



Table 2: Cumulative reward (mean ˘ std. dev.) collected by the optimal state-dependent and the state-independent policy.

T “ 5 T “ 10 T “ 15

state-dependent state-independent state-dependent state-independent state-dependent state-independent
p “ 0.2 5.00˘0.00 5.00˘0.00 11.47˘5.14 10.98˘4.34 20.73˘9.01 19.94˘8.80
p “ 0.5 6.32˘2.06 6.05˘2.00 18.11˘5.91 17.71˘5.92 37.35˘10.70 36.22˘11.06
p “ 0.8 7.87˘1.59 7.84˘1.66 25.53˘4.52 25.24˘4.74 53.24˘8.12 53.02˘8.30

Figure 6: The transition sequences selected for the lucky and unlucky states. Black boxes indicate the selected time-state pairs
pt0,st0q. Yellow arrows mark the transition sequences leading to the selected states. The color map indicates the differences in
q-values of fuse and extract predicted by the optimal state-dependent policy.
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