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Abstract

A hallmark of effective teaching is that it grants learners not just a collection of facts about the world,
but also a toolkit of abstractions that can be applied to solve new problems. How do humans teach
abstractions from examples? Here, we applied Bayesian models of pedagogy to a necklace-building
task where teachers create necklaces to teach a learner “motifs” that can be flexibly recombined to cre-
ate new necklaces. In Experiment 1 (N = 151), we find that human teachers produce necklaces that are
simpler (i.e., have lower algorithmic complexity) than would be expected by chance, as indexed by a
model that samples uniformly from all necklaces that contain the target motifs. This tendency to select
simpler examples is captured by a pedagogical sampling model that tries to maximize the learner’s
belief in the true motifs by prioritizing examples that have fewer alternative interpretations. In Experi-
ment 2 (N = 295), we find that simplicity is beneficial. Human learners recover the underlying motifs
better when teachers produce simpler sequences, as predicted by the pedagogical sampling model.
However, humans learn best from human teachers rather than from model-generated examples, which
suggests that human teachers have additional expectations about how learners will interpret examples
that are not captured by standard models of teaching. Our work provides a principled framework to
understand when and why teachers use simple examples to convey abstract knowledge.
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1. Introduction

Teaching equips learners with abstractions that can be applied to solve new problems and
create new things. One important kind of abstraction is a motif, a recurring design element
that can be flexibly combined into larger works. Motifs are ubiquitous in cultural products and
often bear traces of the communities that produce them, such as the elaborate cable-knit pat-
terns of Aran sweaters, the fundamental rhythmic pattern or clave of salsa music, and meander
designs on the borders of Greek pottery. These traces are not merely stylistic flourishes—they
carry social meaning. Even young children can extract meaning from design elements, such
as whether a design was passed down from one person to another (Jara-Ettinger & Schachner,
2024; Pesowski, Quy, Lee, & Schachner, 2020).

Motifs exhibit two core characteristics of abstractions (Burgoon, Henderson, & Markman,
2013). First, motifs are not bound to specific objects, but can instead be abstracted away
from particular instances to enable the creation of never-before-seen objects. For example, in
knitting, the basic stitches (knits and purls) can be combined to form recurring motifs such
as stockinette and rib stitch. A novice knitter who learns stockinette by making a dishcloth
can then apply this motif to create endless new designs, including hats, scarves, sweaters,
and blankets. Second, motifs expose regularities between different instances, and can thus
make it easier to retain and communicate complex information (Mathy, Friedman, & Gauvrit,
2024; McCarthy, Hawkins, Holdaway, Wang, & Fan, 2021; Wu, Thalmann, & Schulz, 2025).
For example, expert chess players recall meaningful board configurations more easily than
random arrangements because their memories are organized around familiar motifs, such as
openings and defensive positions (Chase & Simon, 1973; de Groot, 1978). Because motifs
enable creative reuse and organize complex information, understanding how humans teach
motifs provides a window into how abstract concepts are transmitted.

Teaching can take many forms, including verbal descriptions, demonstrations, feedback,
and formal classroom instruction (Kline, 2015). In the present work, we focus on a minimal
scenario in which teachers transmit motifs by providing a single, carefully crafted example.
While this scenario is simpler than real-world teaching, it allows us to isolate the factors that
teachers prioritize when selecting information to communicate. Existing computational theo-
ries have formalized teaching from examples as a series of recursive, cooperative inferences:
Teachers select examples that will maximize a learner’s belief in a target concept, and learners
work backwards from the examples provided to infer the concept that the teacher is trying to
communicate to them (Gweon, 2021; Shafto, Goodman, & Griffiths, 2014; Shafto, Wang, &
Wang, 2021). These pedagogical sampling models have been applied to study a wide vari-
ety of communicative behaviors, including how teaching through demonstration differs from
goal-directed behavior (Ho, Littman, MacGlashan, Cushman, & Austerweil, 2016; Tominaga,
Knoblich, & Sebanz, 2022), how parents tune their speech to teach phonetic structures to
infants (Eaves, Feldman, Griffiths, & Shafto, 2016), and how teachers improve their teaching
based on feedback from learners (Chen, Palacci, Vélez, Hawkins, & Gershman, 2024). In
addition, these computations appear to be neurally instantiated in brain regions implicated in
social reasoning when teachers make decisions about what information to communicate to a
learner (Vélez, Chen, Burke, Cushman, & Gershman, 2023). Thus, teaching from examples
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offers a controlled setting in which to study the basic computational principles that underlie
effective teaching across social contexts and modalities.

Understanding how teachers transmit motifs poses new challenges for existing computa-
tional theories of teaching. Prior work has largely focused on capturing how learners acquire
solutions to particular problems (such as how to operate a particular toy; Aboody, Velez-
Ginorio, Santos, & Jara-Ettinger, 2023; Bridgers, Jara-Ettinger, & Gweon, 2020; Buchsbaum,
Gopnik, Griffiths, & Shafto, 2011) or identify the extension of particular categories (such as
inferring the extent of a hidden shape on a canvas; Shafto et al., 2014; Vélez et al., 2023)
from minimal examples. Most of these problems involve a teacher choosing examples that
constitute a part of the target that they intend to teach, such as a single function of a toy with
many functions or a single pixel inside a larger shape. Teaching motifs presents the converse
problem. For example, suppose an expert knitter draws a novice’s attention to the rib stitch
pattern on the collar of a sweater. Her goal is not to help the novice identify sweaters based on
this distinctive subcomponent, as is the case in traditional teaching games (Avrahami et al.,
1997). Rather, the subcomponent itself is the target of teaching; the novice can later abstract
away this subcomponent to knit sock cuffs and hatbands. Compared to traditional teaching
problems, extracting reusable subcomponents is particularly difficult because learners have
to separate the relevant subcomponent (e.g., the specific pattern of knits and purls that make
a rib knit) from details that are idiosyncratic to particular instances (e.g., the textures and
techniques used in the rest of the sweater). We do not yet know to what extent pedagogical
sampling models capture human behavior in this kind of teaching problem, where examples
of the whole are used to teach parts.

To approach this question, we studied how people teach and learn motifs within a simple
necklace-building task inspired by prior studies of cultural transmission (Clegg & Legare,
2016b, 2016a; Kleiman-Weiner et al., 2020). In Experiment 1 (N = 151), we tested how well
existing pedagogical sampling models capture how teachers transmit motifs. In this task,
teachers demonstrated motifs—here, patterns of beads that can be flexibly reused—by provid-
ing a single sample necklace. Our pedagogical sampling model provided a better quantitative
fit to teachers’ decisions than a baseline model that samples uniformly from all necklaces with
the target motifs. It also captured an important qualitative pattern in teachers’ behavior: teach-
ers produce simpler examples than would be expected by chance. In Experiment 2 (N = 295),
we tested the limits of existing models by giving human learners a single sample necklace and
asking them to both infer the underlying motifs and produce two new necklaces that incorpo-
rate them. Learners performed better at both tasks when given examples generated by human
teachers or sampled from the pedagogical sampling model, compared to examples generated
by the baseline model. This effect was largely explained by simplicity—across the board,
learners were better able to recover motifs when given simpler examples. However, learners
performed best overall with human-generated examples, suggesting that state-of-the-art ped-
agogy models still miss aspects of what makes human teaching so effective. One key missing
ingredient may be additional inductive biases that people bring to teaching, such as an expec-
tation that learners will parse necklaces from left to right. Consistent with this idea, we found
that a model that combines pedagogical sampling with a left-to-right bias provides the best
fit to human behavior. By contrast, heuristic models that instantiate a left-to-right bias or a
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simplicity bias without pedagogical sampling did not fit teachers’ decisions as well.
We close by discussing how pedagogical sampling models could be extended further
to better capture how abstractions are culturally transmitted. All experiment materi-
als, data, and analysis code are publicly available at https://osf.io/rnb9e/?view_only=
5fdd7fee414643748d40ee34cd7c8a8d.

2. Computational framework

2.1. Task setup

The experiments below use a necklace-building task as a simple case study of how peo-
ple acquire and transmit motifs. In prior work, necklace-building tasks have been used to
study basic mechanisms that drive cultural transmission, including how faithfully children
imitate (Clegg & Legare, 2016b, 2016a) and how adults learn concepts from step-by-step
demonstrations (Kleiman-Weiner et al., 2020). Experimental stimuli were adapted from
Kleiman-Weiner et al. (2020).

In Experiment 1 (Teaching Abstractions), participants play the role of expert artisans;
their task is to travel from one village to another, teaching an apprentice how to produce
necklaces that will sell well in each village. In our setting, each necklace is a string of 10
orange and green beads that can be represented as a binary sequence. Each village has three
favorite motifs, which are subsequences of two or three beads that can be recombined to
make necklaces (Fig. 1a). A necklace sells well in a village if and only if it includes all
three of the motifs favored in that village (Fig. 1b). In Experiment 2 (Learning Abstractions),
participants played the role of the apprentice. In each village, participants saw one necklace
generated by an expert teacher; their task was to infer the underlying motifs in the necklace
and to use these motifs to create new necklaces of their own.

In both experiments, we modeled teachers’ and learners’ behavior using two models: the
strong sampling model, which serves as a baseline and assumes that the teacher samples uni-
formly from all necklaces containing the correct motifs, and the pedagogical sampling model,
which selects necklaces to maximize the learner’s posterior beliefs in the correct motifs. We
explain these models in more detail below.

2.2. Strong sampling model

Strong sampling refers to a process where examples are uniformly sampled from a target
hypothesis (Shafto et al., 2014; Tenenbaum & Griffiths, 2001). In our task, each “example” is
a sample necklace, and each “hypothesis” is a set of three motifs. In other words, the strong
sampling model chooses uniformly among all necklaces that contain all three motifs favored
by a particular village. We compared the strong sampling model to the behavior of both teach-
ers and learners. In Experiment 1, comparing the fit of the pedagogical sampling model to that
of the strong sampling model provides evidence about the extent to which teachers’ decisions
are guided by higher-order inferences about a hypothetical learner’s beliefs (see Pedagogical
sampling model, below). In Experiment 2, we constructed a learner model that assumes that
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Fig. 1. Teaching task. (a—c) Experiment interface: (a) On each trial, participants were shown the motifs favored by
each village. (b) These motifs can be recombined to create many new necklaces. (c) Participants created a single
sample necklace to teach learners these three motifs. (d) Model schematic: The pedagogical sampling model
actively selects necklaces d to teach (Pr(d|h))) by anticipating how learners will recover the underlying motifs &
from the sample necklace (P, (h|d)).

the teacher’s examples were selected using strong sampling. We used this model as a baseline
to measure how accurately human learners could be expected to recover the target hypothesis
based on a single example (see Baseline learner model, below).

Given a hypothesis 4, the strong sampling model predicts that the probability of selecting
any sample necklace d is inversely proportional to the number of necklaces that contain the
target motifs:

L ifdeh

|h

Pstrong(dlh) = (1)

0  otherwise

We generated the predictions of the strong sampling model by first creating a matrix C of
hypotheses and data. The rows contain all possible 10-bead necklaces (2'° = 1024 possible
necklaces) and the columns contain all possible triplets of motifs (with 2> possible 2-bead
motifs and 2° 3-bead motifs, there are (22;23) = 220 possible hypotheses). Each cell ¢, of
this matrix indicates whether the necklace d could have been generated by combining the
three motifs in & (c¢; , = 1) ornot (¢4, = 0). Thus, Eq. 1 is equivalent to the following matrix

operation:
Cd,h
b
Zd’ Cd'\h

which corresponds to normalizing the entries of each column by its sum.

Pstrong(dlh) = (2)
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2.2.1. Baseline learner model

The baseline learner model assumes that the teacher selects a sample necklace d using
strong sampling. We can use Bayes’ rule to obtain the posterior distribution over motifs given
the example provided:

Pstmng(dlh)P(h)
Zh/ Pstrong(dlh,)P(h/) ’
where Py;,.,¢(d|h) is the probability of selecting the sample necklace d under strong sampling
when the true hypothesis is 4 (Eq. 1) and P(h) is the prior probability assigned to the hypoth-

esis 4. The model further assumes a uniform prior over all sets of motifs (4), so P(h) is the
same for all 4. Thus, Eq. 3 can be simplified as:

Prasetine (h|d) = (3)

Pyt rong(d|h)

Paveine hd) = =——————.
hasctine WD) = 5= el

“

2.3. Pedagogical sampling model

The pedagogical sampling model chooses necklaces to teach by anticipating how the
learner will recover motifs from the example provided. Thus, rather than sampling uniformly
from all necklaces that contain the target motifs, this model favors necklaces that are consis-
tent with fewer alternative hypotheses. Intuitively, this strategy reduces the risk that learners
will recover the wrong set of motifs from the sample necklace.

As an illustration, suppose that a village favors necklaces that contain the motifs “000,”
“11,” and “001.” These motifs can be used to make many necklaces, including the following
two examples:

0000000111 — [000]O0[001][11]

0001100011 — O[001]1[000][11] )

Here, the left side of each line shows the necklace as it would appear to a learner, and the right
side breaks down each example into its component motifs. Note that both of these examples
are ambiguous; there are several alternative sets of motifs that could have generated either
of these necklaces. However, the model favors the necklace “0000000111” because there are
fewer incorrect ways to parse it. Besides the three target motifs, this necklace is consistent
with four incorrect motifs (i.e., “111,” “011,” “01,” “00”"), which make up 13 consistent but
incorrect alternative hypotheses (e.g., “00[000[11,” “11|01]000”). By contrast, “0001100011”
can be parsed incorrectly in more ways. In addition to the three correct motifs, this necklace
is consistent with six incorrect motifs (i.e., “00,7“01,7“10,7“100,”“011,7110"), which make
up 46 consistent but incorrect alternative hypotheses (e.g., “00|100|11,” “110]|011]/000™).
More formally, this model characterizes pedagogy as a form of cooperative communication
between a teacher and a learner (Shafto et al., 2021). The model assumes that both the teacher
and the learner have common knowledge about a space of hypotheses (i.e., all possible triplets
of motifs) and a space of data (i.e., all possible necklaces; Shafto et al., 2014). The teacher
selects necklaces to show to the learner that will maximize the learner’s beliefs in the true set
of motifs favored by a particular village, and the learner works backwards from the necklace
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provided to infer what motifs the teacher is trying to demonstrate. These recursive inferences
between the teacher and the learner are captured using the following system of equations:

Pteacher(d | h)P(h)
Zh’ Pteacher(d|h/)p(h/) ,

Plearner(h | d) = (6)

Pteacher(d|h) X Pleamer(hld)a» (7)

where « is a free parameter that controls how strongly the teacher favors examples that maxi-
mize the learner’s posterior belief in the true motifs. In the results below, we fit « to individual
participants’ responses in Experiment 1.

Following the procedure in Shafto et al. (2014), we calculated a solution to this system of
equations using fixed-point iteration. We began by normalizing each column of the matrix
C by its sum, as in the strong sampling model (Eq. 2). Next, we implemented the recursive
inferences that distinguish pedagogical sampling from strong sampling by renormalizing this
matrix. In the first iteration of this procedure, we normalized each row by its sum to generate
Preamer(1|d). Intuitively, each row of this matrix represents the posterior beliefs of a learner
who assumes that the sample necklace d was generated using strong sampling. (Note that
these first two iterations are equivalent to the strong sampling and learner models described
in the previous section.) In the next iteration, we raised C to the power of o and normalized
each column by its sum to generate P,cner(d /). Each column of this matrix represents the
choice probabilities of a teacher who selects examples by considering the beliefs of the learner
in the prior iteration.

Each iteration of this procedure represents an additional recursive inference. For example,
the next iteration yields the beliefs of a learner who tries to interpret what hypothesis the
teacher is attempting to communicate, and the next iteration after that yields the choice prob-
abilities of a teacher who tries to maximize the beliefs of a learner who actively interprets
their examples, and so on. In principle, we could iterate this system of equations indefinitely;
in practice, Pleamer(h|d) and Pieacher (d|h) converge to a fixed point after a finite number of steps
(Wang, Wang, Paranamana, & Shafto, 2020). We set the tolerance of convergence to 10~ 12,

2.4. Model variants

In addition to the baseline and pedagogical sampling models, we tested four model vari-
ants that incorporate inductive biases that teachers may use when selecting examples (see
Supplementary Material, Section S2). Two of these variants extend the pedagogical sampling
model: one adds a left-to-right bias, favoring examples where motifs appear sequentially from
the leftmost bead; the other adds a simplicity bias, penalizing examples with higher algorith-
mic complexity. We also tested two heuristic models that apply these biases—Ieft-to-right and
simplicity—without pedagogical sampling, to test whether these biases alone can account for
teachers’ behavior.
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3. Experiment 1: Teaching abstractions

In Experiment 1, participants played the role of teachers. Their task was to provide a single
sample necklace to teach a learner generalizable “motifs” that could be recombined to pro-
duce new necklaces that would sell well in a particular village. We compared the necklaces
generated by human teachers to those selected by a model that randomly selects a necklace
that is consistent with the target motifs (strong sampling) and a model that aims to maximize
the learner’s posterior belief in the correct motifs (pedagogical sampling).

3.1. Methods

3.1.1. PFarticipants

We aimed to recruit 150 participants for the teaching task on Prolific (preregistration avail-
able at https://aspredicted.org/GPT_HNV). In both experiments, participants were recruited
through the standard sample option; only participants who resided in the United States, had
an approval rate over 95%, were fluent in English, and completed 100-10,000 studies were
eligible to sign up. We obtained data from 151 participants (M(SD) age = 39.78(13.73),
94 female, 53 male, and 4 nonbinary), potentially due to a server error at the time of sub-
mission. Participants earned $3 for their participation, and they were told that they could earn
a performance bonus of up to $1 based on how well participants in Experiment 2 learned from
the examples they selected. Thus, participants were incentivized to provide helpful examples.
In all experiments, participants provided informed consent in accordance with the require-
ments of the Institutional Review Board at Princeton University.

3.1.2. Procedure

Participants played the role of master artisans; their task was to travel to 18 different vil-
lages and teach an apprentice how to produce necklaces that would sell well in each village.
On each trial, participants were shown the motifs favored by a new village and were asked to
create a single 10-bead necklace that contains all motifs favored by that village. Each village
had a unique set of motifs, and villages were presented in a randomized order.

On each trial, participants saw the three motifs favored by the village displayed on the
top of the screen, and they typed in a sample necklace by placing beads on an empty string
in sequence. For example, if a village had the motifs 000, /0, 111 teachers could pass on
these motifs by producing the necklace 000/0111/0 (emphasis added for demonstration).
Participants could erase beads from the sequence to correct mistakes and press a “submit”
button when they were finished with the sample necklace. To better align the task with our
modeling assumptions, we constrained participants’ responses so that they had to include all
three motifs in their sample necklace; if the necklace they produced was not valid, participants
were prompted to correct the necklace before proceeding.

3.1.3. Computational modeling
Model fitting and comparison: We compared models to participants’ responses using
random-effects Bayesian model selection (Rigoux, Stephan, Friston, & Daunizeau, 2014).
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First, we used maximum likelihood estimation to fit the o parameter of the pedagogical sam-
pling model to each participant’s responses. For each participant, we then evaluated the fit
of the strong sampling and the pedagogical sampling models using the Bayesian information
criterion (BIC = klog(n) — 2log(L)), where k is the number of free parameters in the model
(0 for strong sampling and 1 for pedagogical sampling), » is the number of trials observed per
participant (which was fixed at n = 18), and L is the maximized value of the probability of the
data under the model. Finally, we used —0.5 x BIC as an estimate of log model evidence for
each participant (Bishop & Nasrabadi, 2006) and used it to compute the protected exceedance
probability (pxp) for each model. Protected exceedance probabilities treat models as random
effects that can vary between participants; this measure can be interpreted as the probability
that a given model occurs most frequently in the population.

Model simulation: In addition to the model comparison procedure described above, we
also used fitted models to create simulated datasets. Intuitively, simulated datasets allow us
to compare to what extent the necklaces produced by participants overlap with those that
would be produced by each model. To create simulated datasets, we first used the fitted «
parameters for each participant to create matrices of choice probabilities (pr(d|h)) and then
sampled from this matrix of choice probabilities to obtain simulated responses.

Measuring sequence complexity: We measured the algorithmic complexity of necklaces
using the block decomposition method (Soler-Toscano, Zenil, Delahaye, & Gauvrit, 2014;
Zenil et al., 2018), as implemented in the pyBDM Python package (Talaga & Tsampourakis,
2024). Formally, algorithmic complexity refers to the length of the shortest computer pro-
gram that can reproduce a given sequence. Computing this value exactly is computationally
intractable for all but the shortest sequences. The block decomposition method approximates
this value by dividing longer sequences into smaller fragments. Each fragment is then com-
pared against a large lookup table of precomputed complexity values for short sequences.
These local complexity estimates are combined—while accounting for repetition—to yield a
complexity score for the full sequence.

We selected this measure of algorithmic complexity because it aligns closely with human
judgments of simplicity (Zenil, Toscano, & Gauvrit, 2022). Sequences with lower algorithmic
complexity tend to be judged as “simpler” by human observers, who are more likely to inter-
pret them as the product of a regular, rule-based process (e.g., alternating green and orange
beads) rather than a random process (Griffiths & Tenenbaum, 2003). Lower-complexity
sequences also tend to be easier to remember, likely because they can be compressed into
a more compact mental representation (Mathy et al., 2024; Planton et al., 2021). Fig. 2 shows
necklaces that vary in algorithmic complexity.

3.2. Results

Overall, participants’ choices were better captured by the pedagogical sampling model
than by the strong sampling model (pxp = 1.000; see Fig. 3¢ for model evidence). A closer
look at the human-generated and model-simulated necklaces reveals that both human par-
ticipants and the pedagogical sampling model tended to create sample necklaces that were
simpler than those created by a strong sampling model (Fig. 3a,b). We performed a linear
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OHOHOHOHOHOHOHOHOH®F 2925

Higher Complexity

oHeHeHeHeHeHeHeHeH®l 2514
oHeHeHeHeHOHOHeHeH®! 2757
OHOHOHOHOHOHOHOHOH® 2564

Lower Complexity

OHOHOHOHOHOHOHOH®HS| 2394

Fig. 2. Necklaces of varying levels of algorithmic complexity. More complex necklaces are on top, while the
simplest necklaces—those with the lowest algorithmic complexity scores—are on the bottom. Intuitively, the
simplest necklaces can be described compactly using a regular process (e.g., “alternate green and orange beads”),
while more complex necklaces require longer descriptions (e.g., “add three orange beads, then four green beads,
then two orange beads, then one green bead”).

(a) Complexity distribution (b) Mean complexity
Strong - |
05- Pedagogical - fi
Agent:
0.4- Pedagogical
Strong 26.0 26.5 27.0 27.5
> (C) Model comparison Mean algorithmic complexity
g e 225
c
8 [
0.2- 2001 -
&K
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o 1751
0.1- ‘ @
\ 150
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0.0 T — T r ¥. L
& 26 28 30 PedaéogicalPedag;ogical LR l'3ias Simg;licity

Algorithmic complexity +LR Bias

Fig. 3. Experiment 1 results. (a) Distribution of algorithmic complexity scores for human-generated necklaces
(black line) and model-simulated necklaces (gold, gray lines). (b) Average algorithmic complexity by teacher type.
Human-created sample necklaces have the lowest mean complexity. Error bars denote standard error of the mean.
(c) Model comparison: Each dot represents the fit between model and a single participant’s responses, as measured
by the Bayesian information criterion (BIC). The gray dotted line indicates the BIC of the strong-sampling model;
because this model selects uniformly among all valid necklaces, the probability of each participant’s response
under this model is a fixed value. The box plots show BIC scores of the pedagogical sampling model (Pedagogical),
the left-to-right bias model (LR Bias), and the model that combines both (Pedagogical + LR Bias), and the
model based on the simplicity measure (Simplicity). Overall, participants’ responses were better captured by the
pedagogical sampling model combined with the left-to-right bias.
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mixed-effects regression that predicted the algorithmic complexity of sample necklaces based
on fixed effects and random slopes of teacher type (human, pedagogical model, strong sam-
pling model) and random intercepts by village (18 different ground-truth sets of motifs). Both
participants and the pedagogical sampling model created sample necklaces with lower algo-
rithmic complexity than those produced by the strong sampling model (human-generated
vs. strong-sampled necklaces: b = —0.565,¢(17.001) = —6.709, p < .001; pedagogically
sampled vs. strong-sampled necklaces: b = —0.243,¢(17.003) = —7.108, p < .001). These
results suggest that the pedagogical sampling model captures a specific pattern in how people
teach abstractions: Namely, effective teaching favors simpler examples. Note that we did not
explicitly instruct the model to favor simpler examples—instead, this preference stems from
a more general communicative principle.

However, pedagogical sampling alone does not account for the full pattern of participants’
responses. The examples generated by participants were still simpler than those simulated
by the pedagogical sampling model (pedagogically sampled vs. human examples: b=0.322,
1(16.997)= 5.648, p < .001). For example, when trying to teach the motifs 00, /00, 101,
participants were more likely to teach the necklace “00/0010100,” while the pedagogical
sampling model would assign a higher probability to teach “7/000000101.” The necklace
favored by human teachers has a lower algorithmic complexity score than the one favored
by the pedagogical sampling model (human-generated necklace: 26.99, model-generated
necklace: 27.69). Thus, one possible explanation for this discrepancy is that human teachers
may have additional reasons to prefer simpler necklaces, beyond considering the learner’s
beliefs. For example, teachers may prefer simple examples because they are easier to pro-
duce, or because they are more aesthetically pleasing. We tested two alternative models that
speak against this possibility. First, adding a complexity penalty to the pedagogical sampling
model did not fully close this gap (Fig. S1). Second, the standard pedagogical sampling
model outperforms a “simplicity” model that favors simpler examples without reasoning
about the learner’s mental states (Fig. 3c). These results suggest that participants do not
favor simplicity for its own sake; instead, participants’ decisions may have been guided by
additional inductive biases about what kinds of simple examples are useful to human learners.

Another possibility is that teachers may have expectations about how learners will interpret
the examples that are not captured by the standard pedagogical sampling model. In particu-
lar, the sample necklace favored by human teachers is structured so that the motifs can be
read from left to right, like a script: each motif is first presented once, with no extraneous
beads between them (“00/00101...”). By contrast, the example favored by the pedagogical
sampling model does not have this property; instead, one motif is repeated midway through
the necklace, so the motifs cannot be read out consecutively (/0000...101). To test whether
human-generated necklaces consistently show this property, we implemented a variant of the
pedagogical sampling model with a left-to-right bias; this model favors example necklaces
where the three motifs appear one after another, starting from the leftmost bead. Indeed, the
pedagogical model with a left-to-right bias better captures participants’ behavior than either
the standard pedagogical sampling model or a heuristic model with the left-to-right bias alone
(pxp = 1.000; see Fig. 3c). This result suggests that human teachers may expect learners to
parse necklaces directionally.
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Put together, our results suggest that teachers transmit motifs by selecting simple examples.
Our model comparisons reveal that this pattern of behavior cannot be explained by simple
heuristics that value simplicity for simplicity’s sake, but that it instead arises from more gen-
eral computational principles of teaching. However, we also find evidence that participants’
decisions may have been guided by additional inductive biases about what kinds of simple
examples are useful to learners. If this is the case, then learners might derive benefits from
human-generated examples that are not fully captured by pedagogical sampling alone. In the
following experiment, we tested whether learners can indeed recover motifs from a single
sample necklace, and whether they learn best from examples generated by human teachers.

4. Experiment 2: Learning abstractions

Our results thus far suggest that reasoning about learners’ mental states drives teachers to
create simpler necklaces than would be expected by chance. However, it is an open ques-
tion whether this simplicity aids learning—that is, whether the examples selected by teachers
actually help others recover the underlying motifs. In our second experiment, we approached
these questions by directly testing how well people learn triplets of motifs from observing
a single sample necklace. Sample necklaces were selected from those generated by human
teachers in Experiment 1 and from simulated datasets generated using the strong sampling
and pedagogical sampling models.

4.1. Methods

4.1.1. Participants

We aimed to recruit 300 participants for the learning task on the Prolific platform using
the standard sample option (https://aspredicted.org/CK3_1NP). We lost data from five par-
ticipants due to server errors, leaving us with 295 participants (M(SD) age = 40.02(12.31),
142 female, 149 male, and 4 nonbinary). Participants were paid $5 for completing the task,
plus a bonus of up to $1 contingent on performance.

4.1.2. Procedure

Participants were told that they were apprentices to a master artisan. Their task was to
travel to 18 villages and learn how to produce necklaces that would sell well in each village.
As in Experiment 1, participants were told that necklaces would only sell well in a particular
village if and only if they contained all three motifs favored by that village. However, partici-
pants in Experiment 2 were not shown these motifs directly; instead, they saw a single sample
necklace generated by a teacher and had to infer the motifs represented by the necklace.

On each trial, participants saw the sample necklace on the top of the screen and answered
two questions about the village’s motifs (Fig. 4a). First, participants typed the motifs that
they believed that the village favors. As described above (Computational framework), each
motif was a sequence of two or three beads. Participants could erase the beads that they typed
to correct mistakes, and submit the motifs when they were ready. Once they submitted the
three motifs, participants could not change their responses. Next, participants were shown two
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(a) Task interface (b) Learning outcomes by teacher type
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Fig. 4. Experiment 2 results. (a) Task interface: Participants saw a single sample necklace (top) that contained all
three motifs favored by that village. They then explicitly reported the motifs (middle) and created two unique neck-
laces that were distinct from the sample necklace (bottom). (b) Learning outcomes by teacher type: We measured
learners’ performance based on the number of motifs that they correctly reported (range 1-3; higher scores indi-
cate better performance) and the minimum number of edits needed to transform learners’ necklaces into a correct
necklace (range 0-10; lower scores indicate better performance). Each point denotes a single participant’s average
performance; white diamonds denote average scores by teacher type. As a baseline, we compared these scores to
the performance of a learner model that infers the underlying motifs by assuming that teachers select examples
using strong sampling (purple line). (c) Correlation between the algorithmic complexity of the sample necklace
and learner performance, as indexed by the number of correct motifs (left) and edit distance (right). Shaded areas
denote 95% confidence intervals. Participants performed better when they were shown simpler sample necklaces.

empty necklaces and asked to create two new necklaces that would sell well in that village.
Participants could only proceed if they produced two unique, length-10 necklaces that were
distinct from the sample necklace. Villages were presented in a random order.

Participants completed three within-subjects conditions, which differed in how sample
necklaces were generated. In the Human condition, participants saw sample necklaces cre-
ated by participants in Experiment 1. By contrast, in the Pedagogical and Strong conditions,
participants were shown sample necklaces that were simulated using the pedagogical- and
strong-sampling models, respectively. (See Experiment 1 for more details on how model-
simulated necklaces were generated.) Participants completed 18 trials total, comprising six
trials for each teacher type that were presented in a randomized, interleaved order. Partici-
pants were blind to condition; that is, they did not know what type of teacher generated each
necklace. This experimental manipulation allows us to compare the effectiveness of human-
and model-generated examples.

4.2. Results

We measured participants’ performance using two outcome measures: The number of
unique motifs correctly reported by the participant (correct motifs; range: 0-3, where higher
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scores indicate better performance) and the minimum number of changes that would have to
be made to change participants’ necklaces into a necklace that is consistent with the ground-
truth motifs (minimum edit distance; range: 0—10, where lower scores indicate better per-
formance). We modeled each outcome using a mixed-effects ordinal regression with fixed
effects of teacher type (i.e., Human, Pedagogical, Strong, with Strong as the reference level)
and random slopes of teacher type by village.

Overall, participants learned best when they received sample necklaces selected by human
teachers, rather than necklaces generated by the pedagogical- and strong-sampling models
(Fig. 4b). Participants explicitly reported more correct motifs when the examples were
generated by the pedagogical-sampling model (effect of Pedagogical vs. Strong exam-
ples on correct motifs: b = 0.349, z = 5.120, p < .001) and by human participants from
Experiment 1 (Human vs. Strong: b = 0.702, z = 8.011, p < .001), compared to the strong
sampling model. However, participants recovered the most motifs overall when they received
examples generated by a human (Human vs. Pedagogical: b = 0.341, z = 4.230, p < .001).
We find similar results when examining how close learners were to generating a valid
necklace of their own. Participants generated necklaces that were closer to the target
motifs (i.e., had lower minimum edit distances) when they received sample necklaces
from a human teacher (effect of Human vs. Strong examples on minimum edit distance:
b= —-0.336,z = —4.249, p < .001), but not necklaces generated by the pedagogical-
sampling model (Pedagogical vs. Strong: b= —0.091, z = —1.090, p = .276). Overall,
participants produced more accurate necklaces when they received examples from a human
(Human vs. Pedagogical: b = —0.244, z = —4.354, p < .001).

On average, participants recovered approximately one of the three motifs specific to
each village (mean(SE) number of motifs: 0.987(0.015)) and produced necklaces that were
less than one bead away from an acceptable necklace (mean(SE) minimum edit distance:
0.566(0.013)) when provided a single sample necklace by a teacher. How well could par-
ticipants be expected to do, given the sparse and ambiguous information given to them? We
benchmarked participants’ performance against the performance of the baseline learner model
described above. We used this model in two ways. First, we sampled a triplet of motifs from
Ppaserine(h|d) (Eq. 4) to model how learners reported the motifs contained within each sample
necklace. Second, the model samples uniformly from all necklaces that contain this triplet to
create two new necklaces.

Overall, we find that the learner baseline captures qualitative patterns in learner perfor-
mance. Like human learners, the baseline learner recovered approximately one of the three
motifs specific to each village (mean(SE) number of motifs: 1.168(0.004)) and produced
necklaces that were less than one bead away from an acceptable necklace (mean(SE) min-
imum edit distance: 0.547(0.006)). To compare quantitative fits, we compared participants’
actual performance against this benchmark using paired Wilcoxon tests. Regardless of teacher
type, participants reported slightly fewer correct motifs than the learner baseline (all p < .05
with the average difference of 0.178 motifs) and produced necklaces with similar mini-
mum edit distances as the learner baseline (all p > .2). We note one difference between the
learner baseline and participants’ behavior: In 30% of trials, participants reported motifs that
were not consistent with the sample necklace they were provided. Thus, it is possible that

B5U90 17 SUOLILIOD dAIEaID) 3jaeat|dde ay) Aq peusenob ae sante O ‘8N Jo SajnJ 0y Akeiq T auluQ A3|1AN UO (SUOIIPUOD-PUE-SWLBIALI0 A8 | 1M AReg 1 pUIUO//SdNY) SUONIPUOD Pue SWB | au) 88 *[5202/80/7T] Uo Ariqiauljuo AB|im ‘ ybinquipg JO AiseAiun - ceyz ueuog Ag £0T0Z SBOI/TTTT OT/I0p/W00 A8 1M Aelq 1 pul|uo//sdny woJj pepeojumod ‘8 ‘S0z ‘60L9TSST



H. Ham et al./ Cognitive Science 49 (2025) 150of 19

participants may have been inattentive. In an exploratory analysis, we found that excluding
these observations improved human learners’ average performance slightly but did not affect
our interpretation of the results (see Supplementary Material). Thus, while participants under-
performed slightly relative to our baseline, they recovered about as much information as we
could expect from a single example.

To understand what makes human-generated examples particularly effective, we next used
mixed-effects ordinal regressions to model learners’ performance based on an interaction
between teacher type and the algorithmic complexity of the sample necklaces provided; we
also included random effects of teacher type and algorithmic complexity by village. Partici-
pants who received more complex sample necklaces reported fewer correct motifs (effect on
correct motifs: b = —0.293, z = —3.699, p < .001) and produced necklaces that were farther
from correct necklaces (effect on minimum edit distance: b = 0.269, z = 4.721, p < .001).

Together, our results suggest that simplicity is beneficial: Participants indeed learned bet-
ter when they were given simpler examples. However, participants still learned best when
given examples by human teachers—even though they were not aware of our experimental
manipulation—which suggests that existing models of teaching do not fully capture what
makes human teaching so effective. In the Discussion, we will consider how to bridge this

gap.

5. Discussion

Teaching useful abstractions underlies cultural and technological achievements that require
flexibility, innovation, and creativity. In this paper, we tested to what extent existing models of
teaching capture how humans teach motifs—design patterns that can be flexibly recombined
to create new objects. Overall, we found that the general computational principles that under-
lie effective teaching and communication, as formalized by the pedagogical sampling model,
also capture key patterns in how humans teach and acquire recombinable motifs. Specifi-
cally, teachers favor simple examples, and learners learn best from simple examples, without
explicitly building simplicity as an assumption into our models of either teachers or learners.
However, our results also suggest that human teachers and learners are even more sensitive to
simplicity than standard pedagogical sampling models would predict, highlighting an exciting
direction for future research.

Our results speak to theoretical debates on the importance of providing simple data to teach
complex concepts. Prior work in machine learning has argued that providing simpler exam-
ples at the beginning of training can speed learning in a variety of domains, such as providing
shorter sentences to teach grammars (Elman, 1993), simpler shapes to aid visual classification
(Bengio, Louradour, Collobert, & Weston, 2009), or easier motor tasks to aid skill learning
(Karpathy & Van de Panne, 2012). While prior work has used lengthy training periods with
plenty of examples, our task—where teachers strategically select a single example—provides
insights into when and why simple examples aid learning (see also Rafferty & Griffiths, 2010;
Zhao, Lucas, & Bramley, 2024). Our model comparison suggests that teachers do not favor
simplicity for its own sake; a heuristic model that selects examples in proportion to their
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simplicity does a poor job of capturing teachers’ examples. Instead, teachers strategically
create simple examples that constrain learners’ interpretations. Intriguingly, we found that
human teachers produced examples that were even simpler than the pedagogical sampling
model would predict, and that learners benefited the most from these examples. This pattern
of results suggests that teachers’ decisions may be driven by additional considerations that
are not fully captured by standard pedagogical sampling models. As initial evidence for this
idea, we also find that teachers expect learners to parse necklaces directionally, starting from
the leftmost bead.

Our findings also contribute to a growing literature on the interplay between social and
physical reasoning (Jara-Ettinger & Schachner, 2024; Liu, Outa, & Akbiyik, 2024). Much of
this work has focused on how observers extract social meaning from physical artifacts. For
instance, people can infer that a seat is taken because a jacket is draped over it (Lopez-Brau
& Jara-Ettinger, 2023), or reconstruct chains of social transmission from recurring design
features (Pesowski et al., 2020; Schachner, Brady, Oro, & Lee, 2018). These studies empha-
size that physical artifacts carry traces of the intentions, goals, and social histories of their
creators. Our work extends this perspective by examining how social reasoning shapes the
construction of physical artifacts. In our task, teachers deliberately embedded motifs within a
necklace so that learners would discover them. This required anticipating how learners would
mentally decompose the sequence into meaningful fragments. (In this respect, teachers’ infer-
ences have interesting parallels to how we computed algorithmic complexity—by breaking
down longer sequences into smaller, structured parts.) In this way, our findings suggest that
social reasoning guides not only how people interpret physical artifacts, but also how they
construct artifacts to make their intended structure recognizable to others.

Overall, our findings shed light on the promise and limitations of using Bayesian models
of pedagogy to understand how humans transmit abstract knowledge. However, there are sev-
eral aspects of this domain that our simple task and model do not capture. Most notably, our
task limits teachers to providing a single example. This constraint provides a clearer picture
what teachers value, and it reveals that learners can partially recover motifs from very sparse
data. However, this constraint also obscures the ways that learners may refine abstract con-
cepts over longer interactions. Novices do not learn how to knit a moss stitch or play musical
chords from a single example, but instead through repeated interactions where an expert pro-
vides opportunities for learners to observe skills, corrects their work, and sometimes provides
explicit instruction (Kline, 2015). Thus, one important direction for future work is to exam-
ine how teachers develop longer curricula to refine learning, such as by providing contrasting
cases (Gentner & Hoyos, 2017; Gick & Holyoak, 1983) or by incorporating opportunities for
learners to generate their own examples (Chen et al., 2024; Schwartz, Chase, Oppezzo, &
Chin, 2011).

In addition, while the motifs in our task were simple sequences that could be recombined
in arbitrary ways, real-world cultural motifs are often imbued with meaning (Cohn, 2012;
Hawkins, Sano, Goodman, & Fan, 2023; Long, Fan, Huey, Chai, & Frank, 2024). For exam-
ple, skull motifs can remind viewers of the inevitability of death, and peonies appear fre-
quently in Chinese art as a symbol of prosperity and wealth. It is an open question how
teachers and learners coordinate on the meaning of motifs, or how these meanings constrain
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how motifs are deployed. Thus, more work is needed to extend existing theories of pedagogy
to fully embrace the social meaning of motifs.

Beyond passing down a collection of facts about the world, teaching imparts “tools for
thought” that can empower learners to make new discoveries and create new things. Our
work provides a theoretical and empirical framework to understand how teachers transmit
reusable knowledge. We hope that revealing further components of this ability will provide a
fuller picture of how human intelligence is augmented by social learning and culture.
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