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A model of conceptual bootstrapping  
in human cognition

Bonan Zhao    1  , Christopher G. Lucas    2 & Neil R. Bramley    1

To tackle a hard problem, it is often wise to reuse and recombine 
existing knowledge. Such an ability to bootstrap enables us to grow rich 
mental concepts despite limited cognitive resources. Here we present a 
computational model of conceptual bootstrapping. This model uses a 
dynamic conceptual repertoire that can cache and later reuse elements 
of earlier insights in principled ways, modelling learning as a series of 
compositional generalizations. This model predicts systematically different 
learned concepts when the same evidence is processed in different orders, 
without any extra assumptions about previous beliefs or background 
knowledge. Across four behavioural experiments (total n = 570), we 
demonstrate strong curriculum-order and conceptual garden-pathing 
effects that closely resemble our model predictions and differ from those 
of alternative accounts. Taken together, this work offers a computational 
account of how past experiences shape future conceptual discoveries  
and showcases the importance of curriculum design in human inductive 
concept inferences.

People have a remarkable ability to develop rich and complex concepts 
despite limited cognitive capacities. On the one hand, there is abun-
dant evidence that people are bounded reasoners1–5, entertain a rather 
small set of mental options at a time6–10 and generally deviate from 
exhaustive search over large hypothesis spaces11–15. On the other hand, 
these bounded reasoners can develop richly structured conceptual 
systems16–18, produce sophisticated explanations19–21 and push forward 
complex scientific theories22. How are people able to create and grasp 
such complex concepts that seem so far beyond their reach?

Newton gave a famous answer to this question: “If I have seen 
further, it is by standing on the shoulders of giants”23. This reflects the 
intuition that people are bounded yet blessed with a capacity not just 
to learn from others, but to extend and repurpose existing knowledge 
to create new and more powerful ideas. Such ability is taken to be a 
cornerstone of cognitive development24. For instance, by building from 
atomic concepts of small numbers one, two, three and counting, young 
children seem to bootstrap to more general and abstract numerical 
concepts such as successor relationships and the infinite line of real 
numbers25. Via bootstrapping, extant hard-earned knowledge need 
not be rediscovered every time it is used, saving the learner time and 

effort in constructing new concepts that build on old concepts. Because 
of such effective rerepresentation of existing knowledge, people can 
arrive at rich mental constructs incrementally26–28 and grow a hierarchy 
of concepts naturally through levels of nested reuse18.

While bootstrapping is a key idea in theories of learning and 
development24, both behavioural studies that examine bootstrapping 
directly and cognitive models articulating its mechanisms are relatively 
rare. Piantadosi et al.25 pioneered a line of research that posited boot-
strapping in a Bayesian concept-learning framework. However, they 
focused on the discovery of a recursive function in learning numeric 
concepts and left open the task of examining bootstrapping as a general 
model of online inductive inference. Dechter et al. 29 formalized the idea 
that an artificial learner can start with solving simple search problems 
and then reuse some of the solutions to make progress in more complex 
problems. This approach later developed into Bayesian library learning, 
a class of models aimed at extraction of shared functionalities from a 
collection of programmes30,31. These models have successfully solved 
a variety of tasks and have been shown to capture aspects of human 
cognition32,33. However, these works are primarily aimed at learning 
optimal libraries or solving challenging test problems rather than 
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instance, it could be that object A adds two segments to recipient R, that 
is, R' ← R + 2; or perhaps A doubles the number of segments of R, that is, 
R' ← 2 × R; or each stripe on A is a multiplier, that is, R' ← stripe(A) × R. 
The space of potential causal hypotheses is unbounded. One can use 
a generative model to express this infinite space using a small set of 
building blocks37. In this case, consider a probabilistic context-free 
grammar G with primitives stripe(A), spot(A), R, small integers 0, 1, 2, 
3, and operations +, − and ×. Primitives stripe(A), spot(A) and R return 
corresponding numeric values. Operations such as + bind two numeric 
values and return a numeric value following the corresponding opera-
tion. Grammar G recursively samples these primitives to construct 
concepts (functions). Specifically, each operation primitive such as + 
can either bind numeric primitives or invoke another combination of 
operations, forming nested functions such as stripe(A) × (R − 1). Gram-
mar G thus covers an infinite space of potential concepts and can be 
used to assign a probability distribution over this space (Methods). For 
a concept z, its prior probability is given by PG(z). As learners gather 
data D, they can check how likely it is that concept z will produce data D,  
known as likelihood P(D|z). According to Bayes’ rule, learners are 
then informed by the posterior P(z|D) ∝ P(D|z) × PG(z). While direct 
computation of this posterior is infeasible because the normaliza-
tion term involves infinity, many methods exist to approximate  
this calculation14,37–39.

We build on this Bayesian-symbolic concept-learning framework 
to model conceptual bootstrapping. Specifically we use adaptor 
grammars (AG)36 as our generative grammar to assign prior prob-
abilities. An adaptor grammar, by design, learns probabilistic mappings 
among subparts of a structure, capturing the intuition that when some 
concepts go together frequently, it makes sense to expect that the 
entire ensemble will be common in the future. Such a mechanism of 
caching concept ensembles and reusing them as a whole relaxes the 
context-free assumption of the context-free grammar G introduced 
above, and captures the essence of bootstrap learning: the effective 
reuse of learned concepts without the need to rediscover them every 
time it is used. Liang et al.35 extend adaptor grammars with combinatory 

explicating how resource limitations interact with the mechanisms 
of bootstrapping, and how exploiting such interactions may explain 
human patterns of reasoning errors as well as successes.

Here we provide a computational model of how people bootstrap, 
and propose an algorithmic mechanism that progressively produces 
rich concepts, even with limited cognitive resources. Treating the way in 
which people construct concepts as a computational problem, we model 
bootstrapping as a process-level learning algorithm34 that effectively 
caches previous learned concepts and reuses them for more complex 
concepts through principled rerepresentation. To achieve this, we extend 
standard Bayesian concept-learning frameworks with a dynamic concept 
library that can be enriched over time, powered by a formalization drawn 
from adaptor grammars35,36. We then design experiments informed by 
this model to test and measure how people construct complex concepts 
and how this process adapts to the order in which people encounter, or 
think about, evidence. We compare this bootstrap learning account with 
a variety of alternative models of concept learning and demonstrate how 
a cache-and-reuse mechanism provides an account for human inferential 
limitations, as well as how it enables us to reach concepts that are initially 
beyond our grasp, under facilitatory conditions.

Formalization
Consider the causal learning and generalization task depicted in Fig. 1a.  
An agent object A (called a ‘magic egg’ in our experiments) moves 
toward a recipient object R (called a ‘stick’) and, on touching each 
other, agent object A causes changes to the number of segments on 
recipient object R, producing what we call the result object R'. Here 
an agent object has two numerical features—a number of stripes and 
a number of spots—and people are asked to hypothesize about the 
nature of the causal relationship between agent and recipient objects 
and the result, or formally, the content of function f(stripe(A), spot(A),  
segment(R)) that produces segment(R'). Without ambiguity, we shorten 
this to R' ← f(stripe(A), spot(A), R).

Despite its apparent simplicity, this task captures a key challenge 
of concept learning: the space of potential hypotheses is infinite. For 
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Fig. 1 | Model and task summaries. a, Example causal interaction with (1) causal 
agent (left, circle) and recipient (right) objects; (2) agent A moves rightward to 
the recipient R; and (3) on touching, the recipient R changes into its result form R'. 
The translucent marker is used here only to illustrate the animation. Summary of 
this animation (4), with grey background showing agent A and recipient R before 

the causal interaction, and white background representing the agent A and result 
R' following the causal interaction. b, Schematic of the bootstrap learning model. 
Trees represent example concept programmes. c, Example bootstrap learning 
trajectories over six observations (see main text for explanation).
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logic, offering an algorithm for learning programmes that benefits 
from learning subprogramme sharing and reuse. Here we adapt the 
algorithm in Liang et al.35 to examine this cache-and-use mechanism 
as a process-level model of conceptual bootstrapping under resource 
constraints. Specifically, rather than sampling from a fixed set of primi-
tives, we introduce a latent concept library that can be updated dynami-
cally. Concept library L contains primitive concepts, as well as cached 
concept ensembles, weighted by how useful an ensemble has been 
(see below). Learners generate concepts using contents in library L, 
and adaptor grammar AG defines the probability that library L will 
generate concept z (Methods). This joint probability P(z, L) provides 
a prior PAG(z|L). We can then combine likelihood P(D|z) with this prior, 
yielding the posterior P(z|D, L).

The goal of inference is thus to infer the latent library L that can 
best account for learning data D. Following previous work suggesting 
that human learners make inferences by sampling from an approxi-
mate posterior rather than tracking the entire posterior space of pos-
sibilities12, we use known methods for sampling from Pitman–Yor 
processes40 such that, conditional on library L at any given moment, 
learners can make appropriate inferences about the probabilities of 
different explanations for new or salient events. In particular, we use 
Gibbs sampling (Methods), a Markov chain Monte Carlo method, over 
the joint distribution of concepts and libraries. At each iteration of 
Gibbs sampling, we sample a concept from this distribution z ~ PAG(z|L), 
and combine them with the likelihood function to determine concepts 
favoured by data. We then sample up to three favoured concepts and 
add them, as well as their subparts, to library L (caching; Fig. 1b), pro-
ducing library sample L'. Note that in the next iteration, when sampling 
from PAG(z|L'), those added contents are used as if they were primitives 
(reuse; Fig. 1b) and therefore the learner can compose sophisticated 
combinations with rather few steps of composition (Methods).

This idea of a dynamic concept library is especially powerful when 
we take resource constraints into account. Taking the six observations 
in Fig. 1c for example, the ground truth concept involves different 
causal powers (maths operations) per agent feature. Therefore, try-
ing to determine a concept consistent with all six observations is a 
challenging problem. However, if one looks at the first three pairs that 
involve only stripes (box bordered by solid lines, Fig. 1c), the learner 
may discover that stripes can multiply segments, R' ← stripe(A) × R. 
With this idea in mind and now looking at all six pairs, the learner may 
now manage to construct a nested concept R' ← (stripe(A) × R) – spot(A) 
that explains all observations by reusing the earlier concept as a sub-
concept. If we swap the presentation order and first show the learner 
the last three pairs in Fig. 1c (dashed-bordered box), the space of poten-
tial concept might overwhelm the learner, and without having cached 
any useful subconcepts, the full observation set might be just as con-
fusing. Under our bootstrap learning model, individual learners could 
develop a concept library L* that is the result of two sequential episodes 
of posterior searching and caching. Provided that the first search phase 
leads to the learner caching the crucial building block stripe(A) × R, the 
second search phase is liable to result in their discovering and caching 
the ground truth, making this concept directly available when learners 
attempt to make generalizations and explicit guesses.

Results
Our bootstrap learning model predicts that a successful search for 
a complex target concept is heavily reliant on having good, previ-
ously learned abstractions. We test these model predictions using a 
two-phase causal learning and generalization task. In Phase I, learners 
observe three pairs of objects and their causal interactions (in fixed 
order, as illustrated in Fig. 2a), write down their guessed causal function 
and make generalization predictions on eight pairs of novel objects 
appearing in random order. Immediately after, in Phase II, learners 
observe three further pairs of objects and their causal interactions (with 
the previous three pairs still visible above), provide an updated guess to 

account for all six pairs and then make generalization predictions again 
on the same eight pairs as earlier, in a new randomized order (Methods).

Curriculum-order effects in Experiments 1 and 2
Experiment 1 (n = 165) examined three curricula. Curriculum construct 
and deconstruct were as described in Fig. 1c and discussed above. We 
further included a combine curriculum that shares the same Phase I 
as in construct, but in Phase II keeps stripe(A) = 1 throughout (Fig. 2a), 
making it ambiguous about how stripe(A) × R and R − spot (A) should be 
combined. If people process Phase II with the cached subconcept from 
Phase I, we would expect to see R' ← stripe(A) × R – spot(A) more often 
than R' ← stripe(A) × (R –spot(A)). In follow-up Experiment 2 (n = 165) 
we flipped the roles of the stripes and spots of the agent object (Meth-
ods and Supplementary Information). While all key results replicate 
robustly in Experiment 2, we report per-curriculum collapsed results in 
analysis here for simplicity. First, we observed a significant difference in 
Phase II generalization accuracy—defined as ‘match to ground truth’—
between the construct and deconstruct curricula. (Strictly speaking 
there are no wrong answers for the generalization tasks because they are 
all novel out-of-distribution pairs, such that any generalization predic-
tion is justifiable under some inferred concept.) As illustrated in Fig. 2b, 
participants under the construct curriculum achieved an accuracy of 
44.7 ± 38.3%, significantly higher than those with the deconstruct curric-
ulum of only 22.6 ± 27.5% (t(1,717) = 8.13, P < 0.001, Cohen’s d = 0.4, 95% 
confidence interval (CI) [0.14, 0.24], chance accuracy 1/17 = 5.88%). The 
large standard deviations here imply a widespread individual difference 
in causal generalizations, demonstrating the openness and creativity 
of how people conceptualize causal relationships. Such individual dif-
ference crystallizes when looking at participants’ self-reports (Fig. 2c).  
For Phase II self-reported guesses, 37.8% of participants under the 
construct curriculum were classified as describing the ground truth 
(Fig. 2c) while under deconstruct condition only 6% did so (Wilcoxon 
test z = −5.75, P < 0.001, 95% CI [0, 0.0003], effect size = 0.5). A closer 
look at those self-reports revealed that, for those who induced that 
one feature multiplies in Phase I, 79% subsequently landed on ground 
truth in Phase II, showing a clear bootstrap learning trajectory. Recall 
that at the end of Phase II, in both construct and deconstruct curricula, 
participants had seen identical learning information (Fig. 2a) and hence 
this substantial difference in final learning performance coheres with 
our main claim that people reuse subconcepts to compose more com-
plex ones. Merely observing evidence that favours a target concept is 
not sufficient to induce this concept.

The low matches with ground truth in self-reports in the decon-
struct curriculum also reflect a strong garden-pathing effect41. We 
coded participants’ self-reports according to whether the content 
matches the ground truth, describes an operation such as multiplica-
tion, subtraction or addition and is uncertain or involves complex 
reasoning patterns drawing upon conditionals, positions of features or 
relative quantities (Methods). Notably, 89% of participants under the 
deconstruct condition came up with guesses classified as ‘complex’ in 
Phase I. For example, one participant wrote: “If there are more stripes 
than dots the stick is reduced in length. If there are equal stripes and 
dots then the stick stays the same. If there are more dots than stripes 
the stick increases in length.” This is a significantly higher proportion 
than the complex rule reported in construct Phase I (31.7%, Wilcoxon 
test z = −8.76, P <0.001, 95% CI [−1, −1], effect size = 0.8). The average 
length of Phase I guesses for the deconstruct curriculum was 168 ± 145 
characters, also significantly longer than answers in the construct 
curriculum’s 112 ± 68.1 characters (t(168.09) = −3.76, P <0.001, Cohe
n’s d = 0.5, 95% CI [−85.65, −26.72]). These longer and more complex 
initial guesses appeared to influence the second phase of the experi-
ment. In deconstruct Phase II, after seeing the simpler examples, 50% 
of complex-concept reporters either stuck with their initial complex 
guesses or embellished them even more, resulting in 48.7% complicated 
self-reported causal concepts in Phase II. Furthermore, only 24.8% of 
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participants in Phase II of the deconstruct curriculum described that 
one feature multiplies, significantly lower than the 40.2% of construct 
curriculum participants after Phase I (Wilcoxon test z = −2.46, P = 0.01, 
95% CI [0, 0.0001], effect size = 0.3). These results show that people 
frequently fall prey to learning traps in which initial complex examples 
prevent them from arriving at the ground truth13,42. Again, this pattern is 
consistent with the hypothesis that participants reuse their own Phase I 
ideas to bootstrap learning in Phase II.

Finally, participants under the combine condition overwhelmingly 
favoured ground truth over the alternative, despite these being equally 
complex and compatible with the data. In Phase II self-reports, 24.5% of 
participants under the combine condition reported the ground truth, 
with only one reporting the alternative concept (0.94%; Fig. 2c). Among 
these Phase II ground-truth reporters, 92.31% concluded that one 
feature multiplies in Phase I, aligning with our predictions that people 
reuse the Phase I learned concept as a primitive in Phase II. Interest-
ingly, the Phase II generalization accuracy of the combine curriculum 
(41.7 ± 38.5%) did not differ significantly from that in the construct 
curriculum (44.7 ± 38.3%, t(1,702) = 1.25, P = 0.2). We further catego-
rized a participant as responding according to the ground truth or 
the alternative concept if more than six out of the eight generalization 
predictions matched the corresponding concept. Here, 31 participants 

responded according to the ground truth (29%) and only one accord-
ing to the alternative concept (0.01%, χ2(1) = 28.1, P < 0.001, Cramer’s 
V = 0.94), suggesting that the tendency of cache and reuse leads to 
systematic favouring of certain concepts over alternatives of the same 
level of accuracy and complexity.

Biases in compositional form in Experiments 3 and 4
Results of the combine curriculum appear to support the idea that peo-
ple reuse previous construction as conceptual primitives. However, it 
could also be compatible with the idea that people simply ‘glued’ the two 
subconcepts together additively—that is, (stripe(A) × R) + (− spot(A)) 
is logically equivalent to the ground truth. Furthermore, this 
‘multiply-first’ function fits more naturally with the conventional 
order of mathematical operations in which multiplication is performed 
before addition in the absence of parentheses. To disentangle these 
concerns, we further designed a new curriculum, termed flip, which 
swaps Phase I and Phase II of combine (Fig. 2d). In this flip curriculum, if 
people reuse the concept they inferred in Phase I as a conceptual primi-
tive in Phase II, they should conclude R' ← stripe(A) × (R – spot(A), the 
data-consistent alternative not favoured by the combine condition. If 
people instead use addition as their default or dominant compositional 
mode, then in flip Phase II we would expect that they will still favour the 
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between box bounds and those values; red dots mark means. c, Coded self-reports 
in Experiments 1 and 2 (see Methods for coding scheme). For each curriculum, left 
bars for Phase I and right bars for Phase II.  
d, Curricula design in Experiment 3. Experiment 4 is a feature counterbalance 
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ground truth in Experiments 3 and 4. f, Coded self-reports in Experiments 3 and 4.
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original ground truth. Experiment 3 (n = 120) tested this flip curricu-
lum, together with the combine curriculum as in Experiment 1, using 
material exactly as shown in Fig. 2d. Experiment 4 (n = 120) reversed 
the causal powers between stripe and spot features but otherwise 
replicated Experiment 3 (Methods and Supplementary Information).

We found that people indeed favoured ground truth less often in 
the flip curriculum (Fig. 2e,f). Generalization accuracy, here defined 
as match to the original ground truth, for participants in flip Phase II 
was 35.2 ± 34.3%, while participants in combine achieved 44 ± 41.8%  
(t(1,881.9) = 3.93, P < 0.001, Cohen’s d = 0.2, 95% CI [0.04, 0.13]). In addi-
tion, only 8.7% of participants in the flip curriculum reported ground 
truth in Phase II, compared with 25.4% under the combine condition 
(Wilcoxon test z = −3.46, P < 0.001, 95% CI [0, 0.0001], effect size = 0.3). 
These results are in line with our previous finding that constructing, 
caching and later reusing the key subconcept is crucial for acquiring 
the complex target concept.

However, further examination suggests that the drop in synthe-
sizing ground truth in flip was not primarily driven by turning to the 
alternative. Participants’ generalization accuracy in terms of matching 
the alternative concept was 28.8 ± 17.3%, lower than the level of agree-
ment with the predictions of the original ground truth. As illustrated 
in Fig. 2f, five participants in flip Phase II reported the alternative con-
cept (2.08%) in comparison with 16.7% guessing the ground truth 
(χ2(1) = 27.2, P < 0.001, Cramer’s V = 0.8). This suggests that additive 
compositional form is still quite a prevalent inductive bias, and it inter-
acts with sequential bootstrap learning in phased reasoning tasks. 
Putting it another way, people may be choosing which phase to chunk 
according to their inductive bias on compositional form, and this 
might override the order in which evidence was actually presented in 
the experiments.

In our experimental interface, at the end of Phase II all six pairs of 
learning examples were available on the screen and participants could 
freely scroll up and down to revisit any earlier pairs. Such revisiting 
could induce orders of cache and reuse that are different from those 
designed by the experimenters. In fact, since we encouraged partici-
pants to synthesize causal relationships that can explain all six pairs, 
this may consequently encourage deliberate revisits. By revisiting 
evidence, in the flip curriculum a strong inductive bias on additive 
compositional form could lead to preferring ground truth over the 
alternative. In the deconstruct curricula in Experiments 1 and 2, some 

participants may have revisited Phase I after observing Phase II and 
thereby discovered the ground truth accordingly, reflected by the slight 
increase in Phase II generalization accuracy compared with Phase I in 
deconstruct (Fig. 2b).

Model comparison
We now examine predictions and simulations from a range of compu-
tational models, comparing their ability to reproduce participants’ 
generalization patterns. First we considered a bootstrap learning model 
based on adaptor grammars AG as described in Formalization. Model 
AG first processes Phase I learning examples, acquiring an updated 
library, and then processes Phases I and II altogether with the updated 
library. Next, to account for the fact that participants were able to scroll 
up and down and reaccess Phase I after reasoning about Phase II, we 
considered a variant of AG, adaptor grammar with reprocessing (AGR). 
This model mixes predictions ̂y→ from Phase I to II, and predictions ̂y← 
from Phase II to I, with a weight parameter θ ∈ [0, 1], acquiring a mixed 
prediction ̂yr ∝ θ × ̂y→ + (1 − θ) × ̂y←. Hyperparameters' values in mod-
els AG and AGR were the same as in Liang et al.35. From the estimated 
posterior libraries, we can collect a large number of generated concepts. 
Since concepts here are functions specifying R' for any agent–recipient 
object pairs, evaluation of these concepts on novel object pairs and 
marginalization on these predictions give a distribution of R' for novel 
object pairs (Methods).

For comparison, we examined a ‘rational rules’ (RR) model 
based on Goodman et al.37. This model assumes the same conceptual 
primitives as the adaptor grammar models but uses a probabilistic 
context-free grammar for prior concepts, as specified by grammar 
G in Formalization (see also Methods). Because we evaluate mod-
els using generalizations, we also implemented several subsymbolic 
models capable of generalization but not explicit rule guesses. Here 
we included a similarity-based categorization model (Similarity)43,  
a linear regression model (LinReg) and a multinomial regression model 
(Multinom). We further considered a Gaussian process regression 
(GpReg) model with radial basis function kernels (one per feature), 
because these models exhibit human-like performance in function 
learning and few-shot generalizations44,45. For the categorization and 
regression models, parameters were fitted to the learning examples 
predicting R' using stripe(A), spot(A) and R. We then made predic-
tions about the novel objects with those fitted models, and evaluated 
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model predictions in terms of their log-likelihood (LL) of producing 
participants’ predictions (Methods).

Figure 3a shows each model’s improvement over a baseline model 
of random selection, Δmodel = LLmodel − LLrandom. Model AGR achieves the 
greatest improvement, with the three Bayesian-symbolic models (AGR, 
AG and RR) easily outperforming similarity-based or regression models. 
With fitted model parameters, Fig. 3b plots generalization accuracy in 
each phase for each curriculum between model and people. In line with 
overall model fits, AGR best predicts people’s performance across all 
cases and the non-symbolic models fail to match people’s predictions.

Notably, while model RR can learn that some primitives are more 
common or useful than others, it is unable to discover and reuse con-
cepts, as illustrated in Fig. 3a. We further plot generalization accuracies 
for models AGR, AG and RR against behavioural data in Fig. 3c, showing 
that model RR fails to reproduce the curriculum-order effects between 
construct and deconstruct curricula. This is because model RR is likely 
to have landed on the ground truth after seeing all the data, even for the 
deconstruct curriculum, and thus deviates from how people process 
phases of information. Model AG, on the other hand, is defeated by 
the learning trap because many people were exhibiting no accuracy 
improvement in Phase II relative to Phase I. Model AGR mixes model 
AG with some reprocessing and is therefore able to capture partici-
pants’ modest improvement in deconstruct Phase II generalizations. 
Furthermore, model RR achieves lower accuracy than people in the 
combine Phase II because it assigns as much posterior probability to 
the intended ground truth as to the equivalent-consistent alternatives.

Figure 4 shows the best-fitting AGR model’s predictions in each 
generalization task, with participant data showing a close match. We 
note one interesting discrepancy in generalization task 1, which asked 
about an agent with no spots or stripes: while many participants pre-
dicted the disappearance of segments, because R' ← stripe(A) × R and 
0 × 3 = 0, many participants also predicted that the resulting number 
of segments would remain the same. This could be due to participants 
concluding that absent features meant that nothing would happen. 
Future work could investigate how people reason about these kinds 
of edge cases.

Overall, the adaptor grammar models AG and AGR provided a 
much better account of people’s behavioural patterns in the experi-
ments than the other models we considered. More generally, this means 

that both curriculum-order and garden-pathing effects exhibited 
by people can be explained as consequences of a cache-and-reuse 
mechanism expanding the reach of a bounded learning system. Criti-
cally, these phenomena cannot be explained by either a standard 
Bayesian-symbolic model out of the box or familiar subsymbolic cat-
egorization models, demonstrating that a cache-and-reuse mechanism 
is central to human-like inductive inference to compositional concepts.

Discussion
We propose a formalization of bootstrap learning that supercharges 
Bayesian-symbolic concept-learning frameworks with an effective 
cache-and-reuse mechanism. This model replaces a fixed set of con-
ceptual primitives with a dynamic concept library enabled by adaptor 
grammars, facilitating incremental discovery of complex concepts 
under helpful curricula despite finite computational resources. We 
show how compositional concepts evolve as cognitively bounded 
learners bootstrap from earlier conclusions over batches of data, and 
how this process gives rise to systematically different interpretations 
of the same evidence depending on the order in which it is processed. 
Being a Bayesian-symbolic model, our approach accounts for both the 
causal concepts people synthesized and the generalization predictions 
they made.

People often exhibit a general path dependence in their progres-
sion of ideas46. We show that this follows naturally when a bootstrap 
learner progresses in a space of compositional concepts, constructing 
complex ideas ‘piece by piece’ with limited cognitive resources. Cru-
cially, we focus on how reuse of earlier concepts bootstraps the discov-
ery of more complex compositional concepts using sampling-based 
inference. This builds on other sampling-based approximations to 
rational models7 that demonstrate how memory and computational 
constraints create focal hypotheses in the early stages of learning, and 
impair a learner’s ability to accommodate data they later encounter13,38. 
Going beyond this earlier work, we show how people exceed their 
immediate inferential limitations via reuse and composition of earlier 
discoveries through an evolving library of concepts. Our proposal also 
relates to the observation47 that amortized inference can explain how 
solving a subquery improves performance in solving complex nested 
queries. While our model instantiates reuse in a compositional space 
by caching conceptual building blocks in a latent concept library, there 
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is potential to explore the connection between our formalization with 
amortized inference in terms of how reuse of partial computation might 
shape the approximation of the full posterior.

We also offer additional process-level explanations of why and how 
people often develop diverse understandings of the same evidence. 
People are known to develop biased interpretations of features48, and 
fall easily for various learning traps in category-based generalization 
related to selective attention or assumptions about stochasticity and 
similarity42. Jern et al.49 argued that different evaluations of the same 
evidence are due to different prior beliefs held by people. Tian et al.33 
corroborated the premise that, equipped with different concept librar-
ies, people can derive different solutions to the same problem set. 
Our formalization, however, demonstrates that markedly different 
conceptualization of the same evidence can arise among learners with 
the same learning mechanisms and even the same priors, systematically 
deviating from a normative approach to library learning. Note that our 
experiments tested causal learning and generalization in abstract set-
tings rather than over subjective opinions such as political attitudes, 
and therefore serve as a friendly reminder that an objective interpre-
tation is not guaranteed to prevail, even among capable cognizers 
scrutinizing the same data.

This interaction between our evolving concepts and our trajec-
tory through the environment they seek to reflect lends itself to sev-
eral interesting future directions. Culbertson and Schuler50 reviewed 
children’s performance in artificial language learning and stressed 
that learning is tightly bounded by cognitive constraints. We further 
found that inductive biases, such as those about the compositional 
forms we identified in Experiments 3 and 4, shape the order in which 
people process information. That is, rather than passive information 
receivers, it seems far more plausible that people have inductive biases 
of attention and action that shape how they select which subset of a 
complex situation to process first, and then build on that to make sense 
of the whole picture. Future work may extend our framework to active 
learning scenarios to study such information-seeking behaviours and 
self-directed curriculum design patterns in the domain of concept 
learning51. Moreover, cache and reuse is a useful way to refactor rep-
resentations. Liang et al.35 introduced a subtree refactoring method 
for the discovery of shared substructures, providing natural future 
extensions for studying refactoring as a cognitive inference algorithm 
involved in the development of concepts52.

Recent research in neuroscience is starting to unravel how the 
brain may perform non-parametric Bayesian computations and latent 
causal inference53, and has uncovered representational similarities 
between artificial neural networks and brain activity54,55. Along these 
lines, neural evidence for the reuse of computational pathways across 
tasks56 would seem to support our thesis and further enrich our under-
standing of how the brain grows its conceptual systems and world 
models. One challenge for the symbolic framing adopted here comes 
from the fact that our conceptual representations are intimately tied 
in with their embodied sensorimotor features and consequences57. We 
look forward to more integrated models that capture how symbolic 
operations of composition and caching interface with such deeply 
embodied representations.

Our current work has several limitations that future work could 
address. For instance, we assumed a deterministic likelihood function 
but this does not efficiently handle vague concepts such as the stick 
decreases or increases. A grammar and likelihood able to capture con-
cepts that constrain rather than uniquely predict generalizations could 
capture a larger range of people’s guesses and predictions. Because, for 
simplicity, we did not include conceptual primitives for conditionals, 
our model could not express all of the ‘divide-and-conquer’ self-reports 
people made when attempting to make sense of overwhelmingly com-
plex information. This would be a straightforward extension, achiev-
able by either starting with more basic primitives or assuming an if-else 
base concept. Piantadosi58 argued that base primitives in combinatory 

logic are sufficient to ground any Turing machine-computable mental 
representation and computation. We used natural language-like base 
terms simply for computational and expressive convenience, and all of 
the base primitives and learned concepts we assumed can be decom-
posed into solely combinatory logic bases. In addition, there exist 
many options other than combinatory logic to formalize our tasks. If 
we view variable objects A and R as hard-coded primitives, for example, 
a first-order logic formalization could have sufficed. We, however, pre-
ferred combinatory logic for its convenience and flexibility in routing 
variables, because this makes it easier to share and reuse any generated 
programme. One furher limitation of our current model is that it does 
not handle forgetting by default, a critical feature of human memory 
and learning59–61. To extend our formalization to model lifelong learn-
ing, it would be important to incorporate a mechanism through which 
concepts are forgotten, either through decay or being overwritten or 
outcompeted62.

In sum, we argue for the central role of bootstrap learning in 
human inductive inference and propose a process-level computational 
account of conceptual bootstrapping. Our work puts forward cache 
and reuse as a key cognitive inference algorithm and elucidates the 
importance of active information parsing for bounded reasoners grap-
pling with a complex environment. Our findings stress the importance 
of curriculum design in teaching, and to facilitate communication of 
scientific theories. We hope this work will inspire not only social and 
cognitive sciences, but also the development of more data-efficient 
and human-like artificial learning algorithms.

Methods
All experiments were performed with ethical approval from Edin-
burgh University Psychology Research Ethics Committee (ref. no. 
3231819/1). Preregistration for each experiment is available at https://
osf.io/9awhj/. All participants gave informed consent before undertak-
ing the experiments.

Experiment 1
Participants. A total of 165 participants (118 female, mean age 
(Mage) = 31.8 ± 9.9) were recruited from Prolific Academic, according 
to a power analysis for three between-subject conditions seeking at 
least 0.95 power to detect a medium-size (≈ 0.35) fixed effect. Par-
ticipants received a base payment of £1.25 and performance-based 
bonuses (highest payment, £1.93). The task lasted 9.69 ± 4.47 min. No 
participant was excluded from analysis.

Stimuli. Agent object A was visualized as a circle that moved in from 
the left of screen and collided with recipient R (Fig. 1a). A varied in 
regard to its number of stripes and randomly positioned spots; R took 
the form of a stick made up of a number of cube-shaped segments. 
During learning, all feature values were between 0 and 3. The rule 
we used to determine the recipient’s final number of segments was 
R' ← stripe(A) × R – spot(A). Learning materials were as shown in Fig. 2a. 
For generalization tasks an arbitrary segment number (0–16) could be 
selected, putting a nominal eyes-closed floor level of performance at 
1/17 = 5.88%. Generalization trials were selected via a greedy entropy 
minimizing search to select a set that well distinguishes between a set 
of hypotheses favoured by model AG (Supplementary Information). 
Live demonstrations are available at https://bramleylab.ppls.ed.ac.
uk/experiments/bootstrapping/p/welcome.html, and preregistration 
at https://osf.io/ud7jc.

Procedure. Each participant was randomly assigned to one of the 
three learning conditions—construct, deconstruct or combine. After 
reading instructions and passing a comprehension quiz, participants 
went through experiment Phase I followed by Phase II. In each phase,  
a participant tested three learning examples in the corresponding 
phase as shown in Fig. 2a, each appearing sequentially and as ordered 
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in Fig. 2a. Participants watched the animated causal interactions by 
clicking a ‘test’ button. Once tested, a visual summary of the learning 
example, including the initial and final state of the recipient, was added 
to the screen and remained visible until the end of the experiment. 
Following the learning stage, participants were asked to write down 
their guesses about the underlying causal relationships and to make 
generalization predictions for eight pairs of novel objects. Generaliza-
tion trials appeared sequentially. Once a prediction had been made, 
that trial was replaced by the next. The pairs of generalization objects 
in Phases I and II were the same, but their presentation orders were 
randomized for each participant and in each phase.

Experiments 2–4
Experiment 2 is a feature-counterbalanced replication of Experiment 1 
using true rule R' ← spot(A) × R – stripe(A). A further 165 participants 
(118 female, Mage = 33.8 ± 10.1) who did not participate in Experiment 1 
were recruited from Prolific Academic. The task lasted 9.8 ± 5.2 min. 
No participant was excluded from analysis. Payment scale (highest 
payment £1.95) and procedure were identical to those in Experiment 1. 
Stimuli and preregistration are available at https://osf.io/k5dc3 and in 
Supplementary Information. We conducted two-way analysis of vari-
ance to analyse the effect of feature counterbalancing and curriculum 
design on Phase II generalization accuracy. While both factors had 
significant main effects (curriculum design, F(2, 2) = 9.2, P < 0.001; fea-
ture counterbalancing, F(1, 2) = 8.5, P < 0.001), there was no significant 
interaction (F(2, 324) = 0.15, P = 0.9). This indicates that people may be 
treating stripe and spot features differently, but this difference does 
not markedly interfere with our results for curriculum design.

Experiment 3 recruited a further 120 participants (72 female, 
Mage = 35.4 ± 10.9) to test the combine and flip curricula in Fig. 2d. We 
initially recruited 165 ÷ 3 × 2 = 110 participants to match group size in 
Experiments 1 and 2, but were faced with an imbalance between the 
two curricula (combine, 47; flip, 63) due to the random number gen-
erator used by the experiment to assign participants. To even out the 
samples we recruited a further ten participants on Prolific Academic 
on the same day, all to the combine curriculum, and ensured that this 
extra batch did not include participants from Experiments 1 and 2 and 
the current Experiment 3. All 120 participants were paid at the same 
scale as in Experiments 1 and 2 (highest payment £1.85). The task lasted 
10.7 ± 4.5 min. The procedure was otherwise identical to Experiments 
1 and 2. No participant was excluded from analysis. Preregistration for 
this experiment is available at https://osf.io/mfxa6, and full stimuli 
available in Supplementary Information.

Experiment 4 was a feature-counterbalanced replication of Experi-
ment 3. We recruited a further 120 participants (76 female, Mage = 34.0 ± 12.6) 
from Prolific Academic and who had not participated in Experiments 1–3. 
Here the roles of the stripe and spot features was reversed as in Fig. 2d. 
Participants were paid at the same scale as in Experiments 1–3 (highest 
payment £1.83). The task lasted 9.2 ± 4.4 min. The procedure was identi-
cal to that in Experiments 1–3. No participant was excluded from analysis. 
Preregistration is available at https://osf.io/swde5. As above, two-way 
analysis of variance on feature counterbalancing and curriculum design 
predicting Phase II generalization accuracy revealed main effects on both 
factors (feature counterbalancing, F(1, 1) = 15.12, P < 0.001; curriculum 
design, F(1, 1) = 11.1, P = 0.001), but no interaction (F(1, 236) = 0.77, P = 0.4). 
While people indeed treat stripe and spot features differently, our results 
for curriculum design hold for both experiments.

Coding scheme
Two coders categorized participant self-reports independently. The 
first coder categorized all free responses, and 15% of categorized 
self-reports were then compared against those of the second coder. 
Agreement level was 97.6%.

We identified eight codes. (1) Ground truth: equivalent to the 
ground truth causal relation in each experiment; for example, “length 

is multiplied by the number of lines and then the number of dots is 
subtracted” (Participant 43, Experiment 1). (2) Alternative: equivalent 
to the alternative causal relation in each experiment; for example, “the 
dots are subtracted from the segments by their number and the num-
ber of lines is multiplied by the number of segments” (Participant 461, 
Experiment 3). (3) Comp: unclear or implicit about how two subcausal 
concepts should be combined; for example, “the lines multiply the 
segments and dots subtract them” (Participant 451, Experiment 3).  
(4) Add 2: add two segments to the recipient object under the assump-
tion that nothing happens if the agent object’s feature value is 1 (stripe 
in Experiments 1 and 3, and spots in Experiments 2 and 4); for example, 
“adds two segments to the stick only if there are two or more stripes 
on the egg” (Participant 35, Experiment 1). (5) Mult: one feature of the 
agent object multiplies the recipient object; for example, “the number 
of stripes multiplies the number of segments” (Participant 59, Experi-
ment 1). (6) Subtraction: one feature of the agent object is a subtractor 
to the recipient object; for example, “each spot on the egg removes one 
stick” (Participant 100, Experiment 1). (7) Complex: describe the stimuli 
without generalizing a rule, or report a different rule for each observa-
tion; for example, “three dots means that the sticks disappear, two dots 
means two sticks and one dot means add another stick” (Participant 161, 
Experiment 1); “if there are more lines than dots it will increase in size 
but if there are more dots than lines it will decrease in size; an equal 
number of dots and lines will results in no change” (Participant 134, 
Experiment 1). (8) Uncertain: not knowing, unsure or confused about 
the learning stimuli; for example, “I don’t have a clue!” (Participant 57, 
Experiment 1).

Analysis
To visualize and analyse data we used R v.4.1.1 (for parametric sta-
tistical analysis) and the following packages: rstatix v.0.7.2 (for 
non-parametric statistical analysis and default settings), tidyverse 
v.1.3.1, ggplot2 v.3.3.5, ggpubr v.0.4.0 and ggridges v.0.5.3. The Sankey  
flow charts shown in Fig. 2 were generated using Python v.3.9.1 
and package pySankey v.0.0.1, installed from https://github.com/ 
anazalea/pySankey.

Adaptor grammar models
Algorithm 1. AG(τ, X)
Require:  Type τ = t0 → … → tk

Require:  variables X = {x0, …, xn}
  Sample λ ~ U(0, 1)
  if λ ≤ λ1 then                    ⊳Construct new hypothesis
      zL ~ {z|t(z)output = tk}    ⊳Sample a term, for example, mult
      r ~ r|X|                   ⊳Sample a router, for example, SC
      i ← |t(zL)|                          ⊳Grow RHS branches
      while i > 0, do
        X' = r(X)                        ⊳Get routed variables
        τ′ = t(X′) → t(zL)i−1              ⊳Get type constraints
        AG (r', X')                      ⊳Compose recursively
        i ← i − 1
      end while
  else                            ⊳Fetch existing hypothesis
      Return *z ∈ Cτ with probability λ2

  end if

Causal programmes. Because adaptor grammar AG expects mod-
ular reuse of programme fragments, we formalize programmes in 
combinatory logic63. This solves the variable binding problem in the 
generation of functional programmes64 and is supported by recent 
work by Piantadosi58 arguing that combinatory logic provides a uni-
fied low-level coding system for human mental representations. 
We start with defining a basic set of terms and types relevant to the 
task. This choice is for explanatory convenience and does not under-
mine our method’s ability to grow new types and new basic terms.  
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In combinatory logic, each term z is treated as a function and con-
strained by its input domain type and output codomain type, written 
in the form tinput → toutput, with right association by convention. Here we 
default the last type tn in a type t1 → … → tn to be the output type. Letting 
agent and recipient objects be variables with type obj, we consider basic 
terms getSpot, getStripe and getSegment, each with type obj → int, 
term setSegment, with type obj → int → obj, and terms add, sub and 
mult, each with type int → int → int. The term getSpotobj→int takes an 
object as input and returns the integer number of spots on this object. 
The term addint→int→int takes two integers as input and returns their sum 
as output; and likewise for the other terms above. We additionally 
consider four primitive integers 0, 1, 2 and 3, because these are the 
quantities appearing in the learning examples. Conveniently, we use 
t(z) to read the type of term z. For example, t(getSpot) returns obj → int. 
In addition, combinatory logic utilizes router terms such as B, C, S and 
I for variable binding. For a tree-like structure [router, zL, zR], router B 
sends variable x first to the right-hand side zR (RHS), and the result of 
this is then sent to the left-hand side zL(LHS). In other words, [B, zL, zR](x) 
is executed as zL(zR(x)). Similarly, router C sends x to the left then right, 
router S sends x to both sides, and router I is an identity function that 
returns an input as it is. For n input variables we concatenate n routers 
in corresponding order.

Programme generation. We employ a tail recursion for composing 
terms, as in Dechter et al.29, to efficiently satisfy type constraints. As 
demonstrated in Algorithm 1, for a given target type τ = to → …tk, and a 
set of input variables X = {x0, …, xn}, with probability λ1 (see equation 
(1)) it enters the construction step, and with probability λ2 (see equa-
tion (1)) it returns a term with type τ and adds this returned term to the 
cache (hence the Return* in Algorithm 1). The construction step starts 
by sampling a left-hand-side term, LHS, whose output type is the same 
as the output type of τ, toutput(τ), which is tk because we default the last 
element in a type to be the return type.

Following the notation in Liang et al.35, let N be the number of 
distinct elements in a collection of programmes C, and Mz the number 
of times programme z occurs in collection C:

λ1 =
α0 + Nd
α0 + |C| , λ2 =

Mz − d
|C| − Nd

. (1)

Hyperparameters α0 > 0 and 0 < d < 1 in equation (1) control the 
degree of sharing and reuse. Because λ1 is proportional to α0 + Nd, 
the smaller α0 and d are the less construction and more sharing we 
have. Similarly, because λ2 is proportional to Mz, the more frequently 
a programme is cached the higher weight it acquires, regardless of 
its internal complexity. This definition of λ2 instantiates the idea of 
boostrapping—the prior generation complexity of a cached pro-
gramme is overridden by its usefulness in regard to composing future 
concepts. At its core, AG reuses cached programmes as if they were 
conceptual primitives.

For simplicity, we assumed a flat prior initially such that terms 
sharing the same types have the same prior probability. Based on how 
many variables are fed to this stage, |X|, it then samples a router r of 
corresponding length from the set of all possible routers r|X|. This 
again is assumed to be a uniform distribution. For example, two vari-
ables correspond to 42 = 16 routers {BB, BC, BS, BI, …}, and the prob-
ability of sampling each router is 1/16 = 0.0625. Router r then sends 
input variables to the branches. Now, the target type for the right-hand 
side of the tree is fully specified because it has all the input types 
(routed by r) and a required output type (to feed into LHS). Therefore, 
we apply the same procedure iteratively to acquire the right-hand-side 
subprogram RHS, returning the final programme [r, LHS, RHS]. The 
constructed programme [r, LHS, RHS] is then added to the pro-
gramme library L (caching). Note that, after caching, the counter for 
a term z in library L could change. That is, Mz in equation (1) is updated 

and preference for useful terms will then play a role in future pro-
gramme generation.

Inference. Given this probabilistic model, we face the challenge of 
efficiently approximating a posterior distribution over latent pro-
grammes. Here we use known methods for sampling from Pitman–Yor 
processes35,40 such that, conditional on a programme library at any 
given moment, learners can make appropriate inferences about the 
probabilities of different explanations for new or salient events. This 
can be done via Gibbs sampling65: for the ith iteration, conditional on 
the library from previous iteration Li−1, sample an updated library Li 
and add it to the collection of samples.

During each iteration of Gibbs sampling, when searching for 
programmes consistent with learning data we adopted a breadth-first 
beam search under resource constraints. Because the search space 
grows exponentially as depth increases, we hypothesize that people 
are more likely to search shallowly than deeply. Therefore we draw 
generation depth d ∝ e−bd, where b is a parameter controlling the 
steepness of this exponential decay. With generation depth d, we 
first enumerate a set of frames, ℱ  where rather than applying Algo-
rithm 1 recursively, we use typed programme placeholders for LHS. 
We then sample a frame from ℱ  according to frame generation prob-
abilities. The sampled frame is then ‘unfolded’, replacing each place-
holder with a programme of the required type from the current 
library, yielding a set of fully articulated programmes M. If any 
programme(s) M* ⊆ M produce learning data with likelihood 1, we 
stop the search and sample n = 3 programmes to enrich the library; 
otherwise, we sample another frame from ℱ  and repeat. If no pro-
grammes are perfectly consistent with the data after checking every 
frame from ℱ , we return with a “Nothing found” marker and move to 
the next iteration. Because of memory constraints we were able to 
enumerate frames up to depth d = 2, but this can easily produce 
deeply nested concepts as a result of iterated caching and reuse. We 
ran a grid search over integers 0–10 for parameter b in e−bd on top of 
other model-fitting procedures. When b = 0, depth d = 1 and 2 
searches are equally likely, and as b increases the model prefers depth 
d = 1. The best-fitting b = 6, implying a stronger preference for depth 
d = 1 (see Supplementary Information for additional analysis on 
search depth).

Thanks to the comprehensive search–check–sample procedure, 
we expect our Gibbs sampler to approximate the true posterior quickly 
and without the need for extensive burn-in. Because extensive Gibbs 
sampling is computationally expensive, and there is little value to 
running more than a handful of steps, we further assume that learners 
perform very little search within each phase. We thus approximate the 
population-level library distribution by running 1,000 simulations for 
chains of length h. During model fitting we compared simulations for 
length h = 1, 2, 3, 4 and 5, and found that the best-fitting model runs on 
an h = 2 chain (together with depth weight b = 6), suggesting strongly 
bounded use of resources (see Supplementary Information for addi-
tional analysis on chain length).

Generalizations. We run the generative procedure of grammar AG 
using the sampled libraries to approximate distribution DistM over 
latent causal programmes, and make generalization predictions 
about new, partially observed data D* = 〈A*, R*, ?〉, producing a pre-
dicted distribution DistP over generalizations. Because we compare 
our models with the aggregated behavioural data, we ran the genera-
tion process 10,000 times for a posterior predictive of generalization 
predictions that is reasonably representative of the population. Note 
that these implementations are needed to set up a fair comparison 
between models and aggregated participant data. While generation of 
10,000 hypotheses is certainly computationally demanding, this is not 
required for a single participant and is only to enable us to approximate 
a population-level distribution.
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Rational rules model
Following previous work37,66,67, we implemented a probabilistic 
context-free grammar G = {S,T,M,N,Θ}, where S is the starting symbol, 
T a set of production rules, M a set of non-terminal symbols {A, B, C, D}, 
N the set of terminal nodes, and Θ the production probabilities. To 
retain a close match with the adaptor grammar’s initial concept library, 
we considered production rules as follows:

S→ add (A,A) | sub (A,A) | mult (A,A)

A→ S |B

B→ C |D

C→ stripe | spot | segment

D→ 0 | 1 | 2 | 3

The pipe symbol | represents ‘or’, meaning that the symbol on the 
left-hand side of arrow symbol → can transform to either of the symbols 
on the right-hand side of →. As with the adaptor grammar models, we 
assigned uniform prior production probabilities: let ΓI be the set of pro-
duction rules all starting with I— that is, any production rule γ ∈ ΓI is of the 
form I → K, where K can be any symbol in grammar G, the production 
probability for each γ ∈ ΓI is 1

|ΓI |
. Because grammar G can produce infinitely 

complex causal concepts, we fixed a generation depth of d = 40 in our 
implementation to cover the ground-truth concepts. If d is set too small, 
as for the same constraint we set in the AG models, G cannot land on the 
ground truth by design and therefore is less useful in model comparison68. 
As in the adaptor grammar models, we used a deterministic likelihood 
function to evaluate each concept generated by grammar G, essentially 
discarding all generated concepts that fail to explain all the evidence. We 
set n = 100,000 to acquire good coverage of rules up to and beyond the 
degree of complexity seen in human responses. Generalization predic-
tions are made following the same procedure as the adaptor grammar 
models: apply the approximated posterior rules with the partially 
observed data D* = 〈A*, R*, ?〉 in generalization tasks, and marginalize over 
the predicted R'* as an approximated posterior predictive.

Similarity-based model
Let dl be a learning example data point, consisting of an agent, a recipient 
object and a result object, and dg a generalization task data point, consist-
ing of only an agent and a recipient object. Let stripe(x) be the number of 
stripes of object x, and we can measure the similarity between learning 
example dl and generalization task dg in terms of stripes by taking the 
absolute difference ||stripes(A)dl − stripes(A)dg ||, denoted by δstripes(dl, dg). 
Taking all three features—stripes, spots and segments—into account, the 
feature difference Δ between learning example dl and generalization task 
dg can be measured by Δ(dl, dg) = a × δstripe(dl, dg) + b × δspot(dl, dg) +  
c × δsegment(dl, dg). With these measures we can define a similarity score

σsim(dl,dg) = e−Δ(dl ,dg)

such that the more similar dl and dg are found to be (smaller distance 
Δ), the higher the similarity σsim. When the two data points share the 
same agent and recipient objects, similarity score σsim reaches its maxi-
mal value of 1. When making generalization predictions, this model 
first computes similarity score σsim between the current generalization 
task gi with all the available learning examples {l1, …, lk}, resulting in 
S = {σsim(dl1 ,dgi ),… ,σsim(dlk ,dgi )}. Now, for this generalization task gi, it 
mimics result (dlk) with confidence σsim(dlk ,dgi ). Letting n = result(dlk ), 
task gi predicts p(n) = result(dlk ) × σsim(dlk ,dgi ). Marginalizing over all 
possible result segment values n gives the distribution over the result 
segment values predicted by task gi.

Linear regression model
Let the number of stripes, spots and segments in each learning example 
be the independent variables, and the resulting stick length R' be the 

dependent variable. We fit a linear regression model after each phase 
of the experiment with formula

R′ ∼ a × stripe(A) + b × spot(A) + c × R + ϵ.

We made generalization predictions using fitted parameters and the 
requisite generalization task’s feature values. We rounded the pre-
dicted result segment number to the two nearest integers to match 
the required prediction output.

Multinomial logistic regression model
We treated each potential result segment value as a categorical value 
(rather than continuous as in the linear regression case), and fit a 
multinomial logistic regression model to predict the probability of 
each result segment value using the same formula as that used in the 
linear regression model, with the nnet package (v.7.3) in R (v.4.1.1). 
By fitting the model we call the pred function to gather probabilistic 
predictions about the potential result segment values for each trial. 
We normalize this probabilistic prediction to ensure that this is a 
probabilistic distribution.

Gaussian process model
Treating each learning example as three-dimensional input (stripes, 
spots and segments) with a one-dimensional output (result segments), 
we fit a Gaussian process regression model with radial basis function 
kernels, each per feature xf:

K (xf, x′f) = exp (−
||xf − x′f ||
2σ2

) .

We used the GPy package (v.1.10.0) in Python (v.3.9.1) to fit the model. 
Conditioning on the three-dimensional input for each generalization 
task, the fitted Gaussian process regression model outputs a Gaussian 
distribution over potential segment lengths 𝒩𝒩(μ,σ2). We then bin this 
distribution over the potential discrete segment values for comparison 
with empirical data.

Cross-validation
We used cross-validation to evaluate models against behavioural data 
in generalization tasks on log-likelihood fits. To do this we collapsed 
data from all four experiments by curriculum c, retaining how many 
people (n) chose which segment number y ∈ [0, 16] in each task i, result-
ing in data 𝒟𝒟 = {nciy}. We then let each computational model generate 
a distribution Pci over all possible segment numbers Y = {0, 1, …, 16} for 
task i in curriculum c. Because many model predictions are point esti-
mates, or are centred on only a few segment numbers, we considered 
a trembling-hand noise parameter h ∈ (0, 1

|Y|
) such that, for probability 

distribution P(Y),

Ph(Y = y) = P(Y = y) + h
1 + h|Y | . (2)

Essentially, we add noise h to each random variable in set Y to avoid 
0 likelihoods. The denominator ensures that Ph(Y) is still a probability. 
Different from softmax functions, Ph(Y) stays close to the shape of P(Y) 
when h is small and therefore best maintains each model’s ‘raw’ degree 
of confidence on those one or two predictions. The log-likelihood of a 
model producing data D is thus given by

LL =
ck

∑
c=c1

tj

∑
i=t1

ym

∑
y=y1

ln(Ph
ci
(Y = y)) × nciy. (3)

For each run of the cross-validation we hold out one curriculum ctest, 
and fit the noise parameter h on the other three curricula using 
maximum-likelihood estimation with the optim function in R. Note 
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that, for model AGR, an additional weight parameter λ is jointly fitted. 
We then compute LLtest on curriculum ctest with the fitted parameters. 
Summing over LLtest for all four curricula serves as the total 
log-likelihood fit LL for the model. As a baseline, choosing randomly 
yields LLrand = 570 × 16 × ln(

1
17
) = −25,838.91  because there were  

570 participants, each completing 8 × 2 = 16 tasks and where in  
each task there were 17 potential responses (final stick lengths,  
including 0) to choose from. Any value smaller than LLrandom is an 
improvement over an eyes-closed baseline.

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.

Data availability
Data reported in this study are available on the Open Science Frame-
work (https://osf.io/9awhj/).

Code availability
Implementations of all the models above and analysis are freely acces-
sible at https://github.com/bramleyccslab/causal_bootstrapping and 
https://osf.io/9awhj/.
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reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

All data and analysis scripts are available on the Open Science Framework at the following link: https://osf.io/9awhj/

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Gender was collected based on self-report in the debrief stage of the experiment. No gender-related effects were detected.

Population characteristics See above (Behavioural & social sciences study design).

Recruitment Participants were recruited through Prolific Academic with criteria of being adult and English speaking. No other extra 
selection criterion.

Ethics oversight All experiments were performed with ethical approval from Edinburgh University Psychology Research Ethics Committee (Ref 
No: 3231819/1). All participants gave informed consent before undertaking the experiments.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description Double-blinded randomized control experiments where participants are randomly assigned to different stimuli, reported casual 
concepts they concluded from the stimuli, and then made generalization predictions and provided self-reports.

Research sample We recruited 165 participants for Experiment 1 (118 Female, mean age ± SD 31.8 ± 9.9), according to a power analysis for three 
between-subject conditions seeking at least 0.95 power to detect a medium size (≈0.35) fixed effect. Another 165 for Experiment 2 
(118 Female, mean age ± SD 31.8 ± 9.9) following the same size as Experiment 1, 120 for Experiment 3 (72 Female, mean age ± SD 
35.4 ± 10.9), and 120 for Experiment 4 (76 Female, mean age ± SD 34.0 ± 12.6). Sample size for Experiment 3 was initially determined 
by the same per-condition sample size as in Experiments 1 and 2 (165 ÷ 3 × 2 = 110), but was faced with an imbalance between the 
two between-subject conditions due to the random number generator the experiment used to assign participants. To even out the 
samples, we recruited another 10 participants on Prolific on the same day for the one with fewer participants. Experiment 4 
replicated the sample size as in Experiment 3.

Sampling strategy Participants were randomly assigned to one of the several conditions in each experiment, according to a Math.random() javascript 
function upon landing at the experiment page.

Data collection Data was collected on-line through desktop devices, and saved to an encrypted database on a server owned by the University of 
Edinburgh. No researcher was present when participants took the experiments. Experimental conditions are blinded both to the 
experimenter and the participants.

Timing Experiment 1 was conducted on Dec 22, 2021, Experiment 2 on Nov 9, 2021, Experiment 3 on Dec 8, 2021, and Experiment 4 on Feb 
16, 2022. Each experiment was launched at 10am Edinburgh local time and stopped when the planned number of participants had 
taken the study. 

Data exclusions No data was excluded from analysis.

Non-participation No participants declined/dropped out.
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Randomization Participants were randomly assigned to each between-subject condition according to a random number generator in JavaScript.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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