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Abstract

Human learning does not stop at solving a single problem. In-
stead, we seek new challenges, define new goals, and come
up with new ideas. What drives people to disrupt the existing
conceptual landscape and create new things? Here, we exam-
ine the decision to create new things under different levels of
expected returns. We formalize innovation as stochastically
recombining existing ideas, where successful and more com-
plex combinations generate higher returns. This formalization
allows us to cast innovation-seeking as a Markov decision pro-
cess, and derive optimal policies under different settings. Data
collected through an online behavioral experiment confirm our
prediction that people should invest more time and effort in
seeking innovations when they know the chances of success
are high and the potential new ideas would be rewarding. How-
ever, people also deviate from being optimal, both innovating
more and less than they should in different settings.

Keywords: discovery; innovation; Markov decision process;
decision making; crafting game

Introduction
The ability to create new ideas, concepts, and technologies is
a crowning achievement of human cognition. From making
tools to developing theories about the world, we constantly
enrich, expand, and even revolutionize our pool of available
choices. Those changes in possibilities are fueled by our abil-
ity to create new things, i.e., innovation. Despite its impor-
tance, innovation poses a mysterious decision problem: given
that the currently available choices are already carefully cho-
sen by the rational agents and have good returns, and attempt-
ing new ones does not guarantee successes, how do rational
agents know when they should innovate?

While there is a rich literature on the historical, philo-
sophical, and empirical aspects of innovation (e.g. Basalla,
1988; Kuhn, 1970; Muthukrishna & Henrich, 2016; Youn,
Strumsky, Bettencourt, & Lobo, 2015), rational analyses of
when agents should consider creating new choices have been
much rarer (Bramley, Zhao, Quillien, & Lucas, 2023). This
is because rational models of cognition usually consider a
given set of candidates (e.g., Callaway et al., 2022), or how
to search in an open space of hypotheses (e.g., Piantadosi,
Rule, & Tenenbaum, 2024). These assumptions about a pre-
set space of candidate choices are useful for studying certain
scientific questions, but nevertheless flatten the tension be-
tween the selection versus generation of those choices, which
is a core process underlying innovation.

We propose a formalization of innovation in this paper, ex-
plicitly allowing the agent to create new choices by combin-
ing existing ones. We examine the rational solution to the
problem of deciding when to innovate, based on considera-
tions of the risk and reward of pursuing innovation in different
settings. We show that with a finite number of opportunities
to innovate, this problem corresponds to an optimal stopping
problem (T. S. Ferguson, 2006). We then report a behavioral
experiment where we manipulated the probability that new
combinations will succeed, and the rate at which rewards in-
crease for more complex ideas. Our results reveal that people
are sensitive to the factors identified in our rational model,
but also systematically under- and over-explore in different
settings. We conclude with a discussion of how extensions
of this formal framework could inform our understanding of
how people making new choices, and potentially grow new
knowledge, out of what has already been discovered.

Background
We are interested in when rational agents should innovate—
i.e., creating new choices from recombining existing ones.
This implicitly assumes that ideas are compositional, and
evokes a decision-making problem that reflects the classic
explore-exploit trade-off. We summarize both ideas in this
section, and highlights how crafting games provide an ideal
setup to study innovation.

Innovation as recombination of existing ideas
Our tools and ideas are deeply compositional (Stigler, 1955;
Cornish, Dale, Kirby, & Christiansen, 2017). Introducing
a steam engine to spinning mules led to a new generation
of semi-automatic machines, and combining knowledge of
neurons and logic gave birth to the first artificial neural net-
works (McCulloch & Pitts, 1943). Most research studying
how new ideas spread operationalizes ideas as samples from
a continuous distribution, and generating new ideas as draw-
ing new samples (e.g. Mason, Jones, & Goldstone, 2008;
Mesoudi, Chang, Murray, & Lu, 2015; Thompson & Grif-
fiths, 2019). However, this representation cannot capture
the compositional nature of innovation. In fact, analyses of
patent application data suggest that new technologies usually
come from combining existing technologies (Arts & Veugel-
ers, 2015; J.-P. Ferguson & Carnabuci, 2017; Youn et al.,
2015). Similarly, scientific breakthroughs are built on apply-



ing new methods to old questions (Kuhn, 1970). Recent work
has explored settings in which ideas are represented as items
and innovation is successful combination of existing items
(Derex & Boyd, 2016; Brändle, Stocks, Tenenbaum, Gersh-
man, & Schulz, 2023). This representation emphasizes the
compositional and cumulative aspects of innovation, while
being abstract enough to study the cognitive mechanisms and
computational principles driving innovation.

Innovation and exploration

In a compositional and potentially open-ended space of ideas,
rational agents are faced with the decision of when they
should innovate, as opposed to just sticking with what they al-
ready have. On the face of it, this problem echoes the classic
explore-exploit trade-off, usually studied using multi-armed
bandit tasks (Cohen, McClure, & Yu, 2007; Sutton & Barto,
2018). In these tasks, we imagine a slot machine equipped
with many arms and an agent who has to decide between ex-
ploiting arms with known rewards and exploring unknown
arms, with the goal of maximizing total rewards collected
from pulling the arms. Innovation in the compositional space
of ideas, however, has a substantially different structure: dis-
covering a new idea effectively increases the space of avail-
able choices, and investing in developing a particular idea
could change the potential reward associated with this choice.
That is, the expected return of selecting a choice depends on
the future innovations it could bring, which in turn depends
on the agent’s decision of pursuing innovation for that line
of development. In short, studying when agents should in-
novate requires a task that goes beyond multi-armed bandits
(Brändle, Binz, & Schulz, 2021). Such a computational prob-
lem may also pose challenges to agents with limited computa-
tional resources (Anderson, 1990; Griffiths, Lieder, & Good-
man, 2015), and it remains to be tested whether people can
solve these problems rationally.

Crafting games

The compositional and open-ended views of ideas are nicely
captured in crafting games, where people combine existing
objects to make new objects. For instance, binding a sharp
stone with a wooden handle may make a stone hatchet. Not
all combinations work out, however, which reflects the risk
and opportunity cost of pursuing innovation. Popular crafting
games, such as Minecraft and Little Alchemy, have inspired
research on autonomous exploration in people (Brändle et al.,
2023) and artificial agents (G. Wang et al., 2023). Craft-
ing games are also widely used for designing benchmarks
for human-like generalization and reasoning (Hafner, 2022;
J. X. Wang et al., 2021). Based on these crafting games, in
the next section we formally define a discovery game as part
of a framework for studying innovation. Like crafting games,
the discovery game sits on an open-ended space of compo-
sitions and recombinations. Instead of dealing with concrete
objects and providing knowledge bases of recipes as in many
crafting games (e.g., G. Wang et al., 2023), in the discovery

Figure 1: Visualization of the formal model. Blocks are game
items (ideas). Each line is a round of the game. Yellow
box marks cashing an existing item. The tree in red solid
lines shows successful combinations (innovations), and gray
dashed lines show failed combinations.

game an item represents an idea, innovations are both reward-
ing and risky, and the game tree may grow infinitely.

Formalizing innovation
We formalize ideas as items in a discovery game, and inno-
vation as a successful recombination of existing ideas. In the
discovery game, player can either benefit directly from an ex-
isting item (yellow box, Figure 1)—cashing in the item and
collecting a reward—or try to combine existing items to pro-
duce a more rewarding one. A newly-discovered item will
deliver greater reward, and the player can benefit from it by
cashing in this item in a later step. Given the chance of dis-
covery, and how much increase in returns a successful com-
bination generates, we can derive rational solutions for when
an agent should innovate.

Defining discovery games
A discovery game G is a tuple ⟨M,T ,A,R⟩, where M is a set
of items, T the game tree recording successful combinations,
A a set of actions, and R the reward function. Players may
attempt to combine an item m ∈ M with another item n ∈ M,
denoted as c(m,n). If c(m,n) ∈ T , this is a successful com-
bination and will produce a new item, say, c(m,n) ⇒ o. If
c(m,n) ̸∈ T , the combination fails and no new item is discov-
ered. There are many ways to parameterize the game, and we
elaborate on some variations in the Discussion. To a first ap-
proximation, here we consider success rate p, defined as the
probability of making a successful combination for a given
item, i.e., P(c(m,n) ∈ Tm), where Tm is the subtree that only
involves item m. We consider the situation where the success
rate holds the same for all items. To capture the intuition that
more complex ideas are more rewarding, we let the reward
for an item to grow with the item’s level. Items that cannot be
produced by combining other items are base items, m0, with
base reward r. Climbing up the game tree increases levels: for



a combination c(mi,m j)⇒ mk, k = max(i, j)+1. The reward
associated with item mk is wk · r, where the reward increase
rate w > 1.

Players can take two actions A = {use,combine}. Action
use uses an item and receives the rewards associated with the
item, R(use(mk)) = wkr, and action combine combines two
items of choice. The immediate reward for taking this action
is always zero, R(combine(m,n)) = 0. If the combination is
successful, c(m,n) ∈ T , c(m,n)⇒ o, then later on the player
may choose to benefit from this discovery by collecting re-
wards from this newly discovered item o, and R(use(o)) = w ·
max(R(use(m)),R(use(n)))> max(R(use(m)),R(use(n))).

Optimal policy
The above definitions form a transition matrix P: for a state
s = (k, t) where k records the highest level of currently avail-
able items, and step t = 0,1, . . .. With probability p, ac-
tion combine discovers a new item and leads to state s′ =
(k+1, t+1), and with probability 1− p action combine leads
to state (k, t + 1). Action use always leads to state (k, t + 1).
This forms a Markov decision process (MDP), and we can
compute the optimal policy π∗ following the optimal state-
value function:

q∗(s,a) = R(s,a)+ γ∑
s′

P(s,a,s′)max
a

q∗(s′,a). (1)

For a finite horizon of D steps in total, the optimal policy
in this particular setting corresponds to an optimal stopping
problem (T. S. Ferguson, 2006): one should keep attempting
innovation (combine) until a switch point d, then focus on
collecting the highest possible existing rewards (use). This is
because it is always better to explore for x steps and then ex-
ploit than it is to alternate between exploring for x steps and
spending the rest exploiting. The expected return for switch-
ing at step d is

Eπ(d) = (n−d)

(
d

∑
i=0

(
d
i

)
(pw)i(1− p)d−i

)
r (2)

and the optimal switch point is d∗ = argmaxd Eπ(d). We can
use the fact that it is always more rewarding to explore until
the optimal switch point d∗ to derive an analytical solution to
Equation 2. Let d′ := D− d∗+ 1, interpreted as the number
of steps left, and rd for the most rewarding item m at step d∗:

(pwrd +(1− p)rd)(d′−1)≥ d′rd

pd′w− pw+d′− pd′−1+ p ≥ d′

p(d′−1)(w−1)≥ 1

d′ ≥ 1
p(w−1)

+1. (3)

Equation 3 implies that the optimal switch point depends
on how may steps left, given the success rate p and the re-
ward increase rate w. This future-looking aspect of the model
follows from the exponential growth of the reward function,
and may vary if the reward function is set in different ways.
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Figure 2: Expected returns for switching-once at different
steps. Optimal switch point is marked in big dots. a. reward
increase rate w = {1.5,3}, success rate p = 0.2, and base re-
ward 1. b. Success rate p = {0.2,0.8}, reward increase rate
w = 3, and base reward 1. c. p = {0.2,0.8}×w = {1.5,3}
with scaled base rewards, see the Material section for expla-
nation.

Here, a later switch point corresponds to more steps of at-
tempting new combinations. Hence, our model predicts more
exploration and greater rewards when the reward increase rate
grows while holding success rate fixed (Figure 2a) or when
success rate is increased while holding the reward increase
rate fixed (Figure 2b). Below, we tested these predictions
against human behavior in an online experiment.

Testing the model predictions
We implemented the discovery game presented above in an
online experiment interface and tested the model predictions.

Methods
Participants 210 participants were recruited through Pro-
lific Academic (97 females, Mage = 38 ± 12). The sample
size was determined by a power analysis aiming to to obtain
.95 power to detect a medium effect size of .25 at the standard
.05 alpha level. No participant was excluded from analysis.
To ensure data quality, all participants had to complete two
practice trials and pass a comprehension check before start-
ing the main task. Participants were paid both for their time
and a performance-based bonus. The task took 7± 2.5 min-
utes. The experiment was performed with approval by the
Research Integrity & Assurance Committee of Princeton Uni-
versity (ref. IRB 10859). Preregistration for the experiment is
available at https://osf.io/yph4f/. All participants gave
informed consent before undertaking the experiment.

https://osf.io/yph4f/


Figure 3: Experiment interface. a. Screenshot of a discovery game in the experiment. Arrows and bold text are for illustration
only and not shown to participants. b. A usage of the “Extract” button, leading to gaining 500 points in this demo. Note that
one step is consumed after clicking the button. c. A usage of the “Fuse” button that leads to nothing. d. Examples of successful
fusion discoveries in another machine.

Materials, procedure & design Participants played the
discovery game depicted in Figure 3a. In each round of the
game, participants were shown a new machine with an “Ex-
tract” button and a “Fuse” button, six base items below the
machine, and a counter indicating the number of actions left
within the round, shown as a line of bars on the top rim of the
machine. Clicking an item puts the item in the machine, and
the machine can hold up to two items at a time. Participants
were instructed that they could (1) collect points by putting a
single item in the machine and clicking the “Extract” button
(Figure 3b), or (2) make new items by putting two existing
items in the machine and clicking the “Fuse” button (Fig-
ure 3c-d). We made it clear to participants that fusions suc-
ceed (i.e. lead to a new item) x = 10× p out of 10 times, and
that newly-discovered items are worth w times more points
than the most rewarding item used to make them. Extracting
points from an item or attempting a fusion each consume one
available action; repeating a past unsuccessful fusion attempt
does not consume an action. To make it easier for partic-
ipants to keep track of actions they had already attempted,
each item was labeled with the points that participants would
gain from extraction, and a history of failed fusion attempts
was displayed next to the machine. Participants’ goal was to
maximize the total number of points collected in each round.
Bonus was calculated based on the total points collected.

Participants were randomly assigned to four between-
subjects conditions that differed in the model-predicted op-
timal switch point. Within each of these conditions, we inde-
pendently manipulated the success rate p to be high (p = 0.8)
or low (p = 0.2), and the reward increase rate w to be high
(w = 3) or low (w = 1.5). Together, these led to a 2 × 2
between-subject design: high-p-high-w (hh), high-p-low-w
(hl), low-p-high-w (lh), and low-p-low-w (ll). To ensure that
the total expected rewards are matched across conditions, the
reward that participants receive for extracting base items was
set to 1 point for the ll condition, 150 points for the lh and hl
conditions, and 500 points for the hh condition (Figure 2c).

Participants completed seven independent rounds of the
discovery game, each marked using different color-coded ma-
chines; p and w were held constant for all seven machines,
but permissible combinations—i.e., T —changed from round
to round. After the task, participants completed a debriefing
form where they provided demographic information, feed-
back, and self-reports of how they played the game.

Results
We analyzed the 7 rounds each participant played, totalling
210×7 = 1470 rounds. A button click in the experiment is a
step in the model, extracting points corresponds to action use,
and fusing corresponds to action combine. For the 10 actions
in each round, the proportion of fusion attempts corresponds
to how many steps of recombination the model predicts, as
specified by the optimal switch point. All data and analysis
are available at https://osf.io/8gwpv/.

Participants calibrated innovation-seeking to expected re-
turns. As predicted by Equation 3, overall people seek
more innovations when success rate p is higher and reward
increase rate w is higher (Figure 4a). We ran a mixed-
design ANOVA with success rate p and the reward in-
crease rate w as primary factors and round as a repeated
measure, and the results indicated a significant main ef-
fect of success rate (F(1,206) = 46.954, p < 0.001,η2 =
0.137), and the reward increase rate (F(1,206) = 10.905, p =
0.001,η2 = 0.036). We did not observe a significant effect of
round (F(5.2,1070.43) = 0.283, p = 0.928,η2 = 0.000415)
nor an interaction between success rate and reward increase
rate (F(5.2,1070.43) = 2.049, p = 0.067,η2 = 0.003). As
predicted, both factors independently encourage innovation
seeking. Participants in higher p and higher w conditions also
discovered more advanced items (higher levels) overall (Fig-
ure 4b). Both factors independently predict the highest item
level that participants achieve in a round of game (success
rate: F(1,206) = 454.543, p < 0.001,η2 = 0.583; reward in-
crease rate: F(1,206) = 20.830, p < 0.001,η2 = 0.060).

https://osf.io/8gwpv/
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Figure 4: Behavioral experiment results. a. Proportion of
fusion attempts per round in each condition. Yellow dots are
group means. b. Highest item level discovered per round in
each condition. Bars are group means.

Participants weighted p and w differently. Our model
predicts that participants should attempt fusions at similar
rates in the low-p-high-w and high-p-low-w conditions, be-
cause both have the same optimal switch point. However,
participants attempted significantly more fusions in the high-
p-low-w condition (t(652.93) =−5.4, p < .001,Cohen’s d =
0.44). Figure 5a illustrates how often participants attempted
to fuse over the course of a single round, and it shows that
participants in the low-p-high-w condition consistently made
fewer proportion of fusion attempts in each corresponding
step of a round of the game. Together, these results sug-
gest that though participants’ fusion attempts are influenced
by both success rate and reward increase rate, participants did
not weigh these factors equally; lower success rates discour-
aged participants from innovating, even in the face of a high
reward increase rate.

Most participants switch once from innovating to extract-
ing. The model predicts that there is an optimal point when
participants should switch from innovating and developing
new items to extracting points from the items available. Over-
all, participants indeed started off by attempting to innovate,
and then switched once from innovating to extracting points
from the items available: 73.5% of rounds in the high-p-high-
w adopted this “switch-once” strategy (chance level 10/210 ≈
0.01, χ2(1,N = 336) = 17845, p < .001, with simulated p-
value based on 2000 replicates, same for below), along with
63.7% in high-p-low-w (χ2(1,N = 336) = 13339, p < .001),
64.7% in low-p-high-w (χ2(1,N = 329) = 13502, p < .001),

Figure 5: Comparing the timing of participants’ switches to
model-predicted optimal switching points (stars). a. Aver-
age frequency of fusion attempts in each step over rounds per
condition. b. Histogram of switch points in each round that
exhibits a switch-once strategy

and 69.9% in low-p-low-w (χ2(1,N = 469) = 22513, p <
.001), all significantly above adopting a switch-once strat-
egy by chance. The timing of this switch, however, did not
always align with the model-predicted optimum. Figure 5b
shows the distribution of the switch points in the rounds con-
taining a single switch point. In the high-p-high-w condi-
tion, the most common switch point is the 9th step (32% of all
rounds), which corresponds to the model-predicted optimum,
and switch probabilities steadily increase from the 4th to the
9th steps. In the remaining conditions, however, participants
adopted a mix of strategies. The most common switch point
in the low-p-low-w condition is step zero (no fusion at all;
18% of rounds), which aligns with the model-predicted opti-
mum; however, the timing of participants’ switches was more
variable overall, and there was a strong competing choice of
switching at the 5th step (17.6%). In the other two conditions,
the most commonly-selected switch point differ from the
model-predicted optimum (step seven), and was distributed
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Figure 6: Average score per condition in the experiment. As-
terisks mark the total expected points predicted by the theo-
retical optimal strategy.

rather evenly around the model-predicted optimum. The sub-
stantial over-exploration in the low-p-low-w condition and
wide-spread under-exploration in the other three conditions
are also reflected in the overall lower total scores than the
theoretical optimal (Figure 6).

Discussion
Human innovation is fundamentally compositional and open-
ended—each idea can give rise to new, increasingly complex
ideas (Stanley, 2019) This creates a challenge for human de-
cision making and planning: how much should we invest
in attempting new innovations, versus capitalizing on ideas
that are already available? Here, we formalized this deci-
sion in a discovery game inspired by crafting games, and ex-
amined rational solutions for when an agent should innovate.
We tested model predictions in a simplified, yet open-ended
crafting game. In line with our predictions, people make de-
cisions about whether to attempt innovations by considering
how likely it is that the attempt will work out, and how re-
warding the discovery would be.

Although people considered both the success rate and re-
ward increase rate in making innovation decisions, there are
clear patterns of deviation from the optimal level of innova-
tion predicted by the rational model. First, rather than con-
sidering both factors equally, participants seems to be more
sensitive to success rate p. One possible explanation for this
discrepancy is that participants may be risk averse (Arrow,
1965; Pratt, 1978), preferring to extract rewards from known
options than to risk losing out on rewards by attempting in-
novations that are unlikely to work out. Interestingly, when
both success rate p and reward increase rate w are low, the
model predicts that any innovation attempt is sub-optimal,
and yet in a substantial number of rounds we observed in-
novation attempts. This could be accounted for by the nov-
elty bias (Gershman & Niv, 2015; Krebs, Schott, Schütze,
& Düzel, 2009; Stojić, Schulz, Analytis, & Speekenbrink,
2020). However, instead of being driven by uncertainty, in
this setup people actually have complete information, hence

it remains to be seen whether such over-exploration is caused
by mis-interpretation of the task, or some genuine bias about
innovation seeking.

Moving forward, our simple parametrization of the task
can be extended to capture other important features of real-
world innovations. For example, not every new combina-
tion of ideas has the same probability of success, and real-
world entrepreneurs and researchers often have to choose be-
tween developing small and incremental improvements that
are likely to work and yield low rewards, or attempting big
leaps that connect previously disparate ideas, carrying higher
risk but also potentially bringing greater rewards (Fleming,
2001; J.-P. Ferguson & Carnabuci, 2017). We can study how
people navigate this trade-off in a more controlled setting by
introducing dependencies between the potential risk and re-
turns, rather than varying the two independently and hold-
ing them fixed through the duration of the task. Future work
may examine how people calibrate their innovation-seeking
by estimating p from domain-specific knowledge, rather than
being told p explicitly. Such extension will also allow model-
ing of “stepping stones”—items that are only meaningful as
a precursor to some future discovery, rather than immediately
useful for their own sake.

While the current work focuses on individual decisions
about when to pursue innovations, individuals do not typi-
cally innovate alone. Our framework could be extended to
capture how innovation-seeking decisions are made by teams
or collections. In multiplayer games, teams may buffer them-
selves from the risk of pursuing innovations by dividing labor,
while communication costs could impede the speed and qual-
ity of discovery (Almaatouq, Alsobay, Yin, & Watts, 2021;
Ethiraj & Levinthal, 2004). Social network structures that
specify how information flows have a big impact on how in-
novations spread (Mason et al., 2008; Derex & Boyd, 2016),
and our framework provides a rich space for examining how
individual cognitive mechanisms give rise to group-level dy-
namics (Muthukrishna & Henrich, 2016).

In short, this work is a first step toward answering how peo-
ple renovate their current toolkit in a compositional space of
options. By combining ideas from different literature in novel
ways, we hope we have increased the rewards that might be
derived from further studies of innovation.
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The novelty exploration bonus and its attentional modula-

tion. Neuropsychologia, 47(11), 2272–2281.
Kuhn, T. S. (1970). The structure of scientific revolutions

(Vol. 111). Chicago University of Chicago Press.
Mason, W. A., Jones, A., & Goldstone, R. L. (2008). Propa-

gation of innovations in networked groups. Journal of Ex-
perimental Psychology: General, 137(3), 422–433.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus
of the ideas immanent in nervous activity. The bulletin of
mathematical biophysics, 5, 115–133.

Mesoudi, A., Chang, L., Murray, K., & Lu, H. J. (2015).
Higher frequency of social learning in china than in the
west shows cultural variation in the dynamics of cultural
evolution. Proceedings of the Royal Society B: Biological
Sciences, 282(1798), 20142209.

Muthukrishna, M., & Henrich, J. (2016). Innovation in the
collective brain. Philosophical Transactions of the Royal
Society B: Biological Sciences, 371(1690), 20150192.

Piantadosi, S. T., Rule, J. S., & Tenenbaum, J. B. (2024).
Learning as bayesian inference over programs. In
T. L. Griffiths, N. Chater, & J. B. Tenenbaum (Eds.),
Bayesian models of cognition: Reverse-engineering the
mind. MIT Press.

Pratt, J. W. (1978). Risk aversion in the small and in the large.
In Uncertainty in economics (pp. 59–79). Elsevier.

Stanley, K. O. (2019). Why open-endedness matters. Artifi-
cial life, 25(3), 232–235.

Stigler, G. J. (1955). The nature and role of originality in
scientific progress. Economica, 22(88), 293–302.
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