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Abstract

How do people decide whether it is worth pursuing innovation? For example, in
machine learning new methods often result from combining existing methods, but
there is a risk that a given combination will not work. While seasoned experts
could use their intuitions gained through experience to decide whether some com-
binations are worth trying out, novices to the field have to learn these insights
while trying to maximize their rewards. Here, we formalize this problem and de-
rive optimal policies for agents who know, or do not know, how likely each kind of
combination is to succeed, emulating the effects of expert knowledge. Our model
predicts that novices should not only gather fewer rewards, but also explore sys-
tematically less than the experts. An online behavioral experiment (n = 300) sup-
ports this finding, showcasing the profound impact of domain expertise in guiding
innovative decision making in a combinatorial space.

1 Introduction

People often create new things by recombining (parts of) existing things [1, 2, 3]. To name a few
examples, adding engines to machines unleashed an era of industrial revolution; combining artificial
neural networks with internet-scale data produced astonishing artificial intelligence systems. More
recently, pooling together a range of pipelines created AI scientists that can automatically propose
ideas, test hypotheses, and publish papers [4]. In short, a large part of human discovery has a
fundamentally combinatorial nature.

The space of combinatorial discoveries can have structure, and knowing the odds of attempting
recombination plays a vital role in the decision-making process. Take medical research for example:
experts with good knowledge of whether certain chemicals and proteins go together can make more
efficient experiment designs than those who have to figure out these information. [5] showed that,
when the success rates of recombination are known and the horizon is finite, this decision problem
can be expressed as a Markov decision process and hence solved. In a behavioral experiment, [5]
found that people’s behaviors are in line with those solutions.

However, in more realistic settings, the success rate is not always known. Here, we examine the in-
fluence of such domain-level uncertainty. We ask what a rational agent should do to maximize their
rewards when the success rate of attempting recombination is unavailable. As the number of un-
known domains changes, would a rational agent react differently? How much gain does knowledge
of success rates bring us? We answer these questions both from a Bayesian modeling perspective,
and using data collected via an online behavioral experiment. Understanding these questions crys-
tallizes the dynamics of how people pursue innovation in fields involving combinatorial discoveries,
and helps us make better plans to facilitate future discoveries.
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2 Methods

2.1 Combinatorial Discovery Games

Following [5], we first define a basic combinatorial discovery game G as a tuple ⟨M,T,A,R⟩, where
M is a set of items, T the game tree containing successful combinations, A a set of actions, and R the
reward function. Combining an item m ∈ M and item n ∈ M is denoted as c(m,n). If c(m,n) ∈ T ,
this is a successful combination and will produce a new item, say, c(m,n)⇒ o; if c(m,n) ̸∈ T , the
combination fails and no new item is discovered. Items that cannot be produced by combining other
items are base items, m0, with base reward r. Climbing up the game tree increases levels: for a
combination c(mi,m j) ⇒ mk, k = max(i, j)+ 1, and the reward associated with item mk is wk · r.
Players can take two actions A = {use,combine}. Action use receives the rewards associated with
the item, R(use(mk)) = wkr, and action combine combines two items of the player’s choice. The
immediate reward for taking this action is always zero, R(combine(m,n)) = 0.

A discovery game can be parameterized by a success rate p ∈ [0,1]—the probability of receiving a
successful discovery for any given item, and the reward increase rate w > 1. [5] showed that these
definitions form a Markov decision process (MDP), and under a finite horizon of D steps in total, the
optimal policy in this particular setting corresponds to an optimal stopping problem [6]: One should
keep attempting innovation (combine) until a switch point d, then focus on collecting the highest
possible existing rewards (use). The expected return for switching at step d is

Eπ(d) = (n−d)
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and the optimal switch point is d∗ = argmaxd Eπ(d). Solving Equation 1 analytically states that a
rational player should switch from use to combine when there is d′ steps left, where

d′ ≥ 1
p(w−1)

+1. (2)

2.2 Domain Uncertainty

The above policy specifies what a rational agent should do when they have complete information
about the success rates and reward increase rates. In the real world, this setup corresponds to an
expert with strong domain knowledge, enabling informed decisions that drive innovation and yield
desirable outcomes.

To account for uncertainty in domain knowledge, we extend the setup in [5] to include types of items,
aiming to reflect a more realistic scenario where different types of things may be associated with
different success rates and reward increase rates—like which kinds of chemicals can be productively
combined together. A discovery game with types Gτ extends a discovery game G∪{Z,σ ,τ}, where
type indices Z = {1,2, . . . ,z} is a finite set of integers, and σ : M → Z maps each game item to a type
index. For |Z| = z number of types, choosing two types from z with replacement—allowing same-
type combination—is given by

(z+2−1
2

)
= (z+1)!

2!(z−1)! ways of combining types of items. We denote
each kind of these combinations by τ .

Each kind of combination has its own success rate pτ and reward increase rate wτ . Experts are
defined as those knowing the pτ and wτ for all τ . An expert can thus estimate the maximum total
reward for each kind of combination using Equation 1, and apply Equation 2 to compute the optimal
switch point d∗

τ for the kind of combination that produces the highest rewards. Formally, the rational
decision is to optimize along the most rewarding τ:

τ̂ = argmaxEπ(d∗τ ). (3)

Non-experts, or novices, are not blessed with such information. They are tasked with both inferring
the relevant parameter values, and maximizing their rewards. While the reward increase rate w can
be known immediately after a successful combination is found, the success rate p poses a harder
inference problem. Without loss of generality, we model a novice’s belief about the success rate
with a beta distribution

pτ ∼ Beta(ατ ,βτ). (4)
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Figure 1: Comparing the performance of a novice learning via Bayesian inference and an expert.
a. max total rewards achieved by the novice per prior and number of unique item types. b. fusion
proportions. Red dotted lines mark expert’s performances.

Given this prior, the novice player updates their belief about pτ after observing xτ successes out of
nτ attempts of combine actions for this kind of combination, with

pτ | xτ ,nτ ∼ Beta(ατ + xτ ,βτ +nτ − xτ). (5)

The novice player can integrate the belief defined in Equation 5 with Equation 2 to estimate a switch
point d̃∗

τ given their current belief of success rate pτ for τ , and it is possible to compute the max
expected reward for each τ using Equation 1. The novice player can then apply the same decision
rule in Equation 3 to choose which kind of combination they will interact with, and choose the action

aτ =

{
combineτ if nτ < d̃∗

τ ,

useτ otherwise.
(6)

Note that Equations 1–6 effectively equate to Thompson Sampling [7], a posterior sampling algo-
rithm widely used in online learning problems [8].

For a novice’s prior belief, we set ατ = βτ = k, representing no biases about whether a kind of
combination is particularly promising or devastating. We ran simulations with symmetric beta pri-
ors k = 1, . . . ,10, and number of item types z = 2,3,4,5, leading to |τ| = 3,6,10,15 respectively.
Figure 1 summarizes these simulation results, and reveals that novices both gain fewer rewards and
attempt fusion less frequently than the experts. How strong the prior is—reflected by the k values—
has no substantial influence on the learner’s behavior; domain richness—measured by the number
of item types—has a much stronger impact: The richer the domain is, the bigger the differences be-
tween the novice’s and the expert’s performances are. These results suggest that higher uncertainty
for the novices can lead to more conservative behavior in this particular setting.

3 Experiment

We test these model predictions in a pre-registered online behavioral experiment (https://osf.
io/x2ymd). The experiment was approved by the Research Integrity & Assurance Committee of
Princeton University (ref. IRB 10859).

Three-hundred participants were recruited from Prolific Academic (age 35±12, 55% female). The
experiment took 10± 19 minutes. No participants were excluded from analysis. All participants
gave informed consent before undertaking the experiment.

3.1 Design

We used a cover story of making alien crystals that could be used to generate points. Participants
could either use an existing crystal (action use), or fuse any two existing crystals together (action
combine). A fusion attempt led to a new crystal with probability p. Participants could take 10 actions
in each game. Each game had 4 types of alien crystals indicated by 4 shapes: square, triangle,
diamond (upside-down triangle), and circle. These four shapes form 10 kinds of combinations
(square + square, square + circle, etc.). All crystals start at the base level with r = 100 points. We
set the reward increase rate w = 1.5 for all kinds of combinations and let all participants know this
was the case. Notably, one of the ten kinds of combinations had a high success rate (pH = 0.8),
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Figure 2: Behavioral results. Each dot is an individual data point. Central lines in the boxes are
median values; the lower and upper edges of the boxes are the first and third quantiles. Red lines in
sub-figure d are mean values.

while the others had lower success rates (pL = 0.2). Participants were randomly assigned to one
of the two conditions. For those in the expert condition, they were explicitly told the success rate
parameters. Participants assigned to the novice condition were only told the pH and pL values, but
had no information of which kind of combination was associated with pH or pL.

Participants first read the instructions and had to pass a comprehension quiz to start the task. Each
participant completed 5 practice trials and then 5 task trials. Each trial has only one high-p kind of
combination, sampled randomly and independently. The experiment ended with a short debriefing.
See the experiment in action at https://bz.velezlab.opalstacked.com/crystals-ep/p/
exp.html.

3.2 Results

We only analyzed data in the task trials. As illustrated in Figure 2a-b, overall, participants
in the expert condition collected more total rewards and created items with higher levels. We
conducted a mixed-design Analysis of Variance (ANOVA) with condition as the primary factor
and task as a repeated measure to assess the effects. The results reveal that for total rewards,
there is a significant effect of condition (F(1,298) = 163.479, p < 0.0001), but not for task
(F(3.81,1136.06) = 1.522, p = 0.196) or their interaction (F(3.81,1136.06) = 0.374, p = 0.819);
similarly for item levels, condition has a significant effect (F(1,298) = 179.926, p < 0.0001),
but not for task (F(3.88,1157) = 2.114, p = 0.079) or the interaction between condition and task
(F(3.88,1157) = 1.264, p = 0.283).

Crucially, as predicted by the model, participants in the novice condition attempted fewer fusion
actions (Figure 2c). A mixed-design ANOVA with condition as the primary factor and task as
a repeated measure indicated a significant effect (F(1,298) = 13.183, p = 0.000332), and not
for task (F(3.75,1116.59) = 0.285, p = 0.877) or the interaction between condition and task
(F(3.75,1116.59) = 0.928, p = 0.442).

Interestingly, despite being less exploratory in the sense of attempting fewer fusions, participants in
the novice condition interacted with more item types (Figure 2d). Again, a mixed-design ANOVA
with condition as the primary factor and task as a repeated measure indicated a highly significant ef-
fect of condition (F(1,268)= 329.443, p< 0.0001), and not for task (F(3.83,1027.65)= 0.770, p=
0.540) or the interaction (F(3.83,1027.65) = 0.370, p = 0.822). For the next immediate fusion at-
tempts following a previous fusion, 92.2% participants in the expert condition repeated the same
kind of combination (i.e., putting the same two types of objects as in the previous choice), and this
percentage dropped down to 45% for participants in the novice condition.

4 Conclusion

Advancing discoveries via recombination is a crucial aspect of human intelligence, ranging from cre-
ating physical tools to proposing new theories, or even literally creating novel chemical compounds
or protein structures. We examined decision policies in a task sharing a similar combinatorial nature,
and in particular investigated the influence of domain uncertainty. As both predicted by the model
and supported by empirical data, higher uncertainty not only led to fewer rewards or less advanced
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items, but also lower rate of exploration, although touching on a wilder range of domains. These
results highlight the importance of domain-expertise in guiding effective exploration, and cautions
that uncertainty could be harmful to reward-maximizing agents engaged in combinatory discoveries.

We acknowledge that this model is nevertheless a simplification of how expertise influences com-
binatorial discovery. Real-world innovation usually involve much richer environments and social
dynamics. Future work could extend the stochastic transitions we considered here to include more
complex generative mechanisms and semantic knowledge. It would also be interesting to test vari-
ations of the reward function to mitigate the undesired impact of uncertainty, such as incorporat-
ing information bonuses, extending planning horizons, or enabling the accumulation of knowledge
across generations. After all, science is a collective endeavor. We are also excited to investigate how
individuals communicate discoveries and socially learn from others in similar tasks. By better under-
standing these dynamics, we hope to inform strategies that foster innovation, enhance collaboration,
and optimize exploration in complex discovery processes.
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