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Abstract

Combining two things can create amazing new things—
whether mixing water and flour or feeding large datasets into
neural networks. Hypothesizing rules and theories for recom-
bination, testing those hypotheses, and communicating our
findings to each other are key cognitive mechanisms that allow
us to navigate an open-ended world of possible combinations.
However, in contrast to this open-ended and highly-complex
search problem, cognition is constrained by its capacity. Using
ideas from information theory, we hypothesize that the com-
pressibility of recombination rules predicts how successfully
people find and use these rules. In a combinatorial discov-
ery game, we find that people indeed learn quicker and collect
more points when the rules are more compressible. Interest-
ingly, people use fewer words to communicate their findings
when the rules are either too easy or too hard to compress,
revealing an inverse-U shaped relationship between compress-
ibility and communication effort.

Keywords: combination; discovery; innovation; rule learning;
concept learning; active learning; exploration; communication
channel; cultural transmission

Introduction
Innovation often involves recombination of existing things
(Arthur, 2010; Basalla, 1988; Fleming, 2001; Youn et al.,
2015). From tool-making to theory-building, new forms are
forged from old components. Soaking cabbage with salty
brine, for example, creates a new food (kimchi) that both in-
troduces a novel flavor and can last much longer than fresh
cabbage. However, not all combinations are born equal.
While adding salty brine to chopped cabbage or tuna chunks
brings desirable outcomes, preserving a slice of cake or a
scoop of ice-cream in salty brine is unlikely to work out. Just
as knowing the science of food preservation allows safer and
more efficient practices, mastering the hidden rules behind
successful combinations leads to more effective innovations
(Arthur, 2010; Kuhn, 1997).

Picking out successful combinations from a space of vir-
tually infinite possibilities presents a daunting challenge for
individual, finite minds. Discovering hidden rules involves
synthesizing generalizable hypotheses from limited obser-
vations (Goodman et al., 2008; Fränken et al., 2022; Zhao
et al., 2022), and often requires collecting data and engag-
ing in active learning (Bramley et al., 2017; Coenen et al.,
2015; Gong et al., 2023). Moreover, balancing between ex-
ploiting known combinations and exploring new ones consti-
tutes a classic exploration-exploitation trade-off (Cohen et al.,

2007; Mehlhorn et al., 2015). Prior work suggests that cog-
nitive constraints may bias individual learners to acquire sim-
pler rules about which combinations are successful (Feldman,
2000; Goodman et al., 2008; Zhao, Lucas, & Bramley, 2024),
and be subject to modifying guesses incrementally rather than
adopting entirely new ones, even when better alternatives ex-
ist (Bramley et al., 2017; Fränken et al., 2022).

We develop a novel task to investigate how people actively
explore, discover, and exploit innovation through recombi-
nation. In an interactive 2D world, participants can move
freely, pick up, drop, and combine items, and harvest points
by consuming items (Figure 1). This flexible setup creates a
semi–open-ended discovery game that integrates a wide range
of cognitive processes into a single coherent framework: from
balancing exploration and exploitation to rule-based induc-
tion, and from reward maximization to optimal compression.
We use this setting to examine how people find effective com-
binations. Drawing on classic findings in concept learning
and information theory, we hypothesize that a set of hidden
combinations that are easier to express in words are also eas-
ier to discover, and consequently enable more effective cre-
ation of new things, regardless of statistical proprieties like
its size and sparsity. To foreshadow, while our key predic-
tions are supported by empirical results, we also find an in-
triguing non-linear relationship between the compressibility
of the hidden combinations and the lengths of participants’
free-response texts describing their discoveries.

Background
Innovation by Recombination
Prior work in several fields—including cognitive science and
organizational theory—has pointed to recombination as a key
mechanism for the discovery of new ideas (Arthur, 2010;
Basalla, 1988; Fleming, 2001; Lake et al., 2017; Youn et al.,
2015). In recent studies of how people discover new com-
binations (Brändle et al., 2023; Vélez et al., 2024; Zhao,
Vélez, & Griffiths, 2024), crafting games prove to be a
powerful tool. In crafting games, players can collect re-
sources and recombine them to grow an inventory of unique
items. Commercially-available crafting games, such as Little
Alchemy, Minecraft, and One Hour One Life, are increas-
ingly used to understand how people explore in the absence
of external rewards (Brändle et al., 2023), how to build agents



that can discover new technologies in vast physical environ-
ments (Wang et al., 2023), and how people collaborate to
develop new technologies together (Vélez et al., 2024). In-
spired by these works, here we present a “discovery game”
that provides a customizable test environment for studying
innovation by recombination (see also Zhao, Vélez, & Grif-
fiths, 2024).

Discovery Games and Reinforcement Learning
Unlike running analyses on large-scale empirical game
datasets (Brändle et al., 2023; Vélez et al., 2024), our dis-
covery game allows the experimenter to design specific game
rules, and study how people search for hidden laws with as
little influence from domain specific knowledge as possible.
The challenge in the discovery game is that labeled learn-
ing data is not always available, and players have to actively
gather data, propose and update hypotheses (Coenen et al.,
2015; Fränken et al., 2022; Gong et al., 2023), and mean-
while balance between exploring new combinations and ex-
ploiting existing ones to reap the rewards (Sutton & Barto,
1998). One algorithm that addresses this problem is Posterior
Sampling for Reinforcement Learning (PSRL) (Strens, 2000;
Osband et al., 2013). PSRL consumes as input a prior distri-
bution over possible environments—e.g., a player’s epistemic
uncertainty (Der Kiureghian & Ditlevsen, 2009) of the hidden
laws in the discovery game, and selects actions via Thompson
Sampling (W. R. Thompson, 1933) in each episode. Theoret-
ically, PSRL is known to achieve statistically-efficient rein-
forcement learning for a broad class of environments (Osband
et al., 2013; Abbasi-Yadkori & Szepesvari, 2014; Agrawal &
Jia, 2017).

Concept Learning and Compressibility
While PSRL offers a principled algorithmic model for how
learning progresses in a discovery game, it assumes perfect
information updating—an assumption that rarely holds in the
real world. Given limited cognitive resources, people often
need to compress raw observations into more succinct men-
tal representations. This challenge to many aspects echoes
the classic concept learning problem in cognitive psychol-
ogy (Feldman, 2000; Goodman et al., 2008; Nosofsky et al.,
1994; Shepard et al., 1961), where people learn to use a sin-
gle concept to refer to many individual exemplars. One way
to learn such concept-to-exemplar mappings is by describ-
ing what features of the exemplars suffice to define a con-
cept. Feldman (2000) showed that the complexity of such
descriptions is a reliable predictor of how hard it is for peo-
ple to learn that concept (Shepard et al., 1961). In paral-
lel, rate-distortion theory (RDT)—a subfield of information
theory—offers a formal account of the trade-off between the
capacity of a representation and its fidelity in compressing
and recovering observations (Shannon, 1959; Berger, 1971).
RDT has proven particularly useful for understanding con-
cept formation (Imel & Zaslavsky, 2024; Zaslavsky et al.,
2018) and capacity-limited learning (Arumugam et al., 2024;
Prystawski et al., 2023). Recent work has also explored in-

Figure 1: Demo interface of a discovery game. a. The Grid-
World view with example actions (grey arrows). b. Informa-
tion shown for the example actions. c. History of attempted
recipes is updated automatically. d. Discovered items’ points.

tegrating RDT with PSRL (Prystawski et al., 2023), offering
computational frameworks of how players transmit combina-
tion discoveries to future players through limited channels.

Theoretical Framework
In this section, we present the discovery game and our main
theoretical proposal in detail.

Game Environment
The discovery game we focus upon here takes place in a 2D
GridWorld (Figure 1a). Players can move around this Grid-
World in four directions: Up, Down, Left, and Right. The en-
vironment is spawned with some game items to start. When
a player moves on top of an item, they can Pickup the item,
at which point it is added to their inventory. When holding an
item in their inventory, the player may Consume the item and
collect points from it, which also removes the item from their
inventory. Alternatively, the player may Drop an item they
are holding, which leaves the item in the player’s inventory.
If the player currently holds an item and moves on top of an-
other item, they may try to Combine these two items. In this
game, participants’ move actions are controlled by the arrow
keys, actions Pickup, Consume and Combine by the SPACE
key, and action Drop by the D key.

A player’s goal is to maximize the total points they collect
in the game within a fixed number of T actions. Consume
an item and Combine two items each count as one action.
Moving around, picking up, or dropping items do not count
towards T . The game is spawned with base-level (level = 0)
items. When two items m and n are combined successfully,
this creates a new item o that is one level higher than its par-
ents, level(o) = max(level(m), level(n)) + 1. The points of
each item increases with its level. Combining items in itself
does not earn any points. Once successfully combined, the



Figure 2: Illustration of the compression process. a. Com-
pressing the example positive recipes in the shaded box. b.
Difference in compressibility. The set in the shaded box can
be compressed as ab, while the set in the dashed box cannot
be further compressed.

used items are removed from the player’s inventory, with the
outcome item added to the inventory. The piece of informa-
tion specifying what comes out of a combination is called a
“recipe.” We call the recipes where the outcome is a new
item a “positive recipe,” in contrast to recipes that result in a
failed combination (i.e., nothing is produced). To maximize
points, players have to discover and even predict recipes from
attempting combinations.

The discovery game outlined above can be formalized as
a finite-horizon, episodic Markov Decision Process (MDP)
(Bellman, 1957; Puterman, 1994) M = ⟨S ,A ,R ,P ,µ,T ⟩,
where S is the state space representing the player’s current
inventory of items, action space A = {Combine,Consume},
reward function R : S ×A → R≥0, a deterministic transition
function P : S ×A → S , the initial state distribution µ∈∆(S),
and T the horizon or maximum number of actions a player
may take. As specified earlier, R (Combine(m,n)) = 0 for
any items m,n, and R (Consume(m)) = 10Level(m). Although
the transition function P is fully determined by some hidden
laws that specify all the positive recipes, agents are not in-
formed of these hidden laws at the start of the game. Hence,
for any current inventory s ∈ S , a player who tries to combine
any two items m,n∈ s from will potentially obtain a new item
o according to the collection of positive recipes E :

P (s,Combine(m,n)) = (1){
(s\{m,n})∪{o} m,n ∈ s and ⟨m,n⟩ ∈ E
s otherwise.

Complexity of the Hidden Laws
A player attempting to learn all of the positive recipes con-
tained in E faces a difficult exploration problem. As intro-
duced earlier, PSRL may solve this challenge, but PSRL pre-
sumes perfect posterior belief updates given the entire his-
tory of interactions thus far, while people are likely too con-
strained by mental capacity to perform such exact updates.
Inspired by Feldman (2000), we assume that players com-
press all the positive recipes they discovered so far into a

mental message (Figure 2). Since each recipe involves two
objects, we extend Feldman’s original Boolean complexity
measure to include a relational concept of “same.” Specifi-
cally, we describe a recipe in two steps: (1) encode the feature
values of the first object using a predefined dictionary (e.g., a
for “is circle” and a′ for “is not circle”), and (2) encode the
feature values of the second object relative to the first (e.g.,
noting “same shape” if the two objects share the same shape).
For each positive recipe r ∈ E , we transcribe it into a descrip-
tion l(r). We then form the description of the entire set E ,
denoted E, by joining all individual descriptions l(r) disjunc-
tively. Let E represent the literal transcription of E , defined
as E :=

∧
r∈E l(r). Finally, we simplify E as much as possi-

ble to produce the maximally compressed message L∗. The
compressibility of the set of positive recipes E is then

q(E) = len(E)− len(L∗), (2)

where the length function len(·) counts the number of sym-
bols in a description. For E1 and E2 of the same size (i.e.,
containing the same number of positive recipes), the lengths
of their literal transcriptions E1 and E2 are the same, but L∗

1
and L∗

2 may be of different lengths (see Figure 2b), leading to
different compressibility, and therefore different conceptual
difficulty.

In addition to this maximally compressed message L∗,
players in theory can use many messages to represent their
beliefs about the MDP—in this case, a message L about the
set of positive recipes E suffices to construct the entire MDP
because the states, actions, reward function, and horizon are
all known. Following Prystawski et al. (2023), the expected
loss or distortion incurred when a player encode their beliefs
about MDP M into message L is

E [d(M ,L)] = E
[
V ∗

M −V ∗
ML

]
, (3)

where ML is the random variable representing a MDP con-
sistent with message L. Overall, this expected distortion is
the expected regret or performance shortfall between what a
player could have achieved holding the full MDP M versus
based on the limited information encoded in message L.

Recall that Equation 2 measures the compressibility of the
true MDP. If we let R ∈ R≥0 be an individual player’s rate
limit or upper bound on how many bits of information they
may use, then the minimum expected distortion an agent can
achieve is subject to the rate-limit R, known as the distortion-
rate function (Shannon, 1959):

D(R) = inf
p(L|M ):I(M ;L)≤R

E [d(M ,L)] , (4)

where I(M ;L) is the mutual information quantifying how
much information about the true MDP M are retained in the
player’s message L.

Here, greater compressibility q(E) via shorter L∗ implies
that an agent is less limited in how much information about
the true MDP M can be conveyed by its own message L.



This suggests that increased compressibility allows an agent
to operate at a higher rate limit R. In contrast, a less compress-
ible MDP, measured by q(E), requires the player to optimize
for making the best use of limited communication bandwidth
subject to a lower rate limit R. Together, Equations 2 and 4
imply that the higher compressibility q(E) is, the better per-
formance (lower regret) we should expect. In terms of be-
havioral measures, we predict that the more compressible a
hidden law is, the more total points people will collect. We
additionally predict that people will use more words to de-
scribe less-compressible hidden laws, when communicating
their findings to future players.

Testing Predictions
We test the above predictions in an online experiment, ap-
proved by the Research Integrity & Assurance committee at
Princeton University (IRB ref. no. 11092). Pre-registration is
available at https://aspredicted.org/5znp-hgbp.pdf.

Experiment
Participants 120 participants (54% female, Mage = 35 ±
11) were recruited from Prolific Academic. Average task
completion time was 16 minutes. Participants were paid
$1.50 for participation and a performance-based bonus, rang-
ing from $0.33 to $1.00. All participants gave informed con-
sent before participating. One participant was excluded from
analysis because of a server connection error.

Materials Participants played a discovery game in a 20×
20 GridWorld (Figure 1). Before beginning the game, they
were told to harvest energy points from alien crystals in
a faraway planet. These alien crystals varied along three
dimensions—shape = { circle, square, diamond, triangle },
texture = { solid, dotted, lined, checkered }, and color = {
red, orange, yellow, green, blue, purple }. The color dimen-
sion was reserved to indicate item points: let i be the index
of a color in color, items of that color have points 10i. For
instance, each red item is worth 1 point, and each orange item
is worth 10 points.

Each game is initialized with 16 red crystals that span all
possible shape-texture combinations. We defined three hid-
den laws that determine which combinations lead to new,
more rewarding items, summarized in Table 1. These hid-
den laws have a similar number of positive recipes, mean-
ing that the success rates for these hidden laws are all sim-
ilar to a stochastic learner. When a combination works out,
the resulting crystal takes the same shape as the first crystal
(held by the avatar), the same texture as the second crystal
(on the grid where the avatar stands), and changes color to
indicate its value. Each player’s complete history—the com-
binations they had attempted and points collected from con-
suming items—were automatically updated and shown to the
participants as part of the game’s interface (Figure 1b-d).

Design and Procedure Participants were randomly as-
signed to one of the three between-subject conditions: high-,
medium-, and low-compressibility (Table 1). After instruc-

Compressibility Description # positive
recipes

High Same shape 48
Medium Circle goes with square, tri-

angle goes with diamond,
textures must be different

48

Low Circle goes with square, tri-
angle goes with diamond,
texture index of first crystal
≥ texture index of second
crystal

46

Table 1: Hidden laws used in the experiment.

tions, each participant played one game with T = 40 ac-
tions. Note that only consuming crystals and combining crys-
tals count as actions. Picking up or dropping items, moving
around, do not count. After the game phase, participants com-
posed two messages to pass on what they learned in this game
to a hypothetical future player. The first message is about how
to better play the game, and the second about the rules or pat-
terns they found. Participants were told they would be paid a
bonus based on how well the next player who read their mes-
sages performs. The experiment then concluded with partici-
pants providing demographic information and feedback.

Results
Participants did better when the hidden laws are more
compressible. As predicted, higher compressibility led to
better performance. As illustrated in Figure 3a and Figure 3b,
participants in the high-compressibility condition achieved
more total points, and uncovered more advanced items, than
participants in the medium-, and then the low-compressibility
conditions. A one-way ANOVA revealed a significant ef-
fect of condition on log-scaled1 total points (F(2,116) =
13.97, p < 0.001, η2 = 0.19,95%CI: [0.09,1.00]), as well
as a significant effect of condition on the highest levels
each participant managed to achieve (F(2,116) = 16.55, p <
0.001,η2 = 0.22,95%CI: [0.11,1.00]).

Breaking down by actions, participants in the high-
compressibility condition constantly gathered more points
throughout the task (Figure 3c), while this trend is slower
for the medium- and low-compressibility conditions. A lin-
ear mixed-effects model with fixed effects for action in-
dices, the conditions, their interactions, and random effects
for individual participants revealed that while action index
was obviously a significant factor (t(4638) = 18.49, p <
0.001), there were also significant interactions between ac-
tion index and conditions (with low-compressibility as ref-
erence, t(4638) = 16.95, p < 0.001 for high-compressibility
and t(4638) = 9.93, p < 0.001 for medium-compressibility),

1Since item points grow exponentially with levels, we trans-
formed the total points to log scale for all the analyses throughout
this paper.



Figure 3: Participant performance. a. log-scaled total points
collected per condition. b. highest levels created per condi-
tion. c. total points at each action step per condition; points
are converted to log scales. d. highest levels created at each
action step per condition.

indicating that the speed of point accumulation was signifi-
cantly different among these conditions.

Similarly, for item levels, participants in the high-
compressibility condition quickly unlocked more advanced
items (Figure 3d), while those in the medium- and low-
compressibility conditions struggled to uncover more ad-
vanced items. Figure 3d also indicates that the highest levels
discovered in the high-compressibility condition plateaued
towards the end of the experiment, and this is likely due
to the hard limit on the highest levels participants could
achieve at all (max level = 5). We ran a linear mixed-
effects model with fixed effects for action indices, condi-
tions and their interactions on the highest item levels at that
point, with random effects for individual participants. This
model suggested significant main effects of both action index
(t(4638) = 23.07, p < 0.001) and the high-compressibility
condition (t(124) = 3.40, p = 0.0009), indicating that both
later actions and being in the high-compressibility condi-
tion are associated with a higher highest item level. We
also found significant interaction effects between action index
and the high-compressibility condition (t(4638) = 15.73, p <
0.001) as well as between action index and the medium-
compressibility condition (t(4638) = 14.89, p < 0.001), sug-
gesting that the effect of action index on highest item levels
indeed differs depending on the condition.

Figure 4: Self-report measurements. a. Total number of char-
acters for sentences in the rules category, per condition. b.
Number of Uncertainty sentences (labeled as NA by a cus-
tomized GPT-4 prompt) per condition.

Inverse-U shape of communication effort and compress-
ibility As these self-reports are noisy and unstructured, we
pre-processed them with GPT-4. Using OpenAI API, we in-
structed GPT-4 to play the role of a helpful assistant, and sort
each sentence in a participant’s self-report into three cate-
gories: tips, rules, and NAs. Tips refer to descriptions of
generic game rules (e.g., “more points are better”), and how to
interact with the game, (e.g., “use D to drop items”). Rules in-
clude sentences talking about the possible hidden laws, (e.g.,
“same shapes combine”). Lastly, NAs are sentences express-
ing pure uncertainty or being lost (e.g., “i have no idea”).

One of our key predictions is that as compressibility goes
up, people would use more words to describe their findings
about the hidden laws. In reality, we found an inverse-U
shape (Figure 4a): for sentences classified as rules, partici-
pants in the medium-compressible condition used the most
amount of words, whereas participants in both the high- and
low-compressible conditions used fewer words. A one-way
ANOVA revealed a significant effect of condition on the num-
ber of rule sentences, F(2,116) = 3.17, p = 0.0457,η2 =
0.05,95%CI: [0.00,1.00], and a marginal effect of condi-
tion on the total number of characters of the rule sentences,
F(2,116) = 2.97, p = 0.05,η2 = 0.05,95%CI: [0.00,1.00].
For the length measure (number of characters), a few out-
liers with excessively long sentences had an unbalanced im-
pact on the group mean measures. We applied the Interquar-
tile Range (IQR) method to exclude outliers (n = 5), and
only considered those who did provide rule sentences. On
this cleaned rule message dataset, a one-way ANOVA re-
vealed a significant effect of condition on number of char-
acters in rule sentences, F(2,81) = 4.22, p = 0.01,η2 =
0.09,95%CI: [0.01,1.00]. Although the effect size is modest,
this effect is quite remarkable considering how noisy these
self-reports are, especially the large variance of individual
styles in self-reporting.

In line with objective performance, as compressibility went
down, we saw more sentences about unknowns (Figure 4b).
A one-way ANOVA revealed a significant effect of con-
dition on Uncertain sentences (category NA), F(2,116) =



Figure 5: Relationship between reported rule lengths and total
points collected (log-scaled) in each condition.

6.98, p = 0.001,η2 = 0.11,95%CI: [0.03,1.00]). A same
but smaller effect holds for the total lengths of these uncer-
tainty sentences, measured as the total number of characters,
F(2,116) = 5.99, p = 0.003,η2 = 0.09,95%CI: [0.02,1.00].

Communication effort interacts with performance and
compressibility Having found an inverse-U relationship
between compressibility and the lengths of participants’
rule descriptions, we next examined whether participants
who were more successful in the game wrote longer sen-
tences to pass on their knowledge. In the high- and low-
compressibility conditions, we did not observe strong cor-
relation between performance and length of rule sentences
composed (linear regression, high-compressibility condition:
R2 = 0.0003,F(1,31) = 0.009, p = 0.9, low-compressibility
condition: R2 = 0.0002,F(1,20) = 0.003, p = 0.9). How-
ever, in the medium-compressibility condition, rule sentence
length was a positive predictor of performance (total points,
log-scaled), R2 = 0.2,F(1,27) = 5.93, p = 0.02. These re-
sults suggest that when the environment is too regular (high-
compressibility) or too complex (low-compressibility), the
relationship between performance (i.e., total points collected)
and communicational effort (number of words used) was not
necessarily correlated. However, there might exist some
sweet spots, such as in the medium-compressibility condi-
tion, where people with better performance also put more ef-
fort into communicating and transmitting their discoveries.

Discussion
Humans have created countless new ideas by recombining
old ones, from sprinkling salt on chocolate chip cookies to
combining wings with bicycle parts to make the first airplane.
Discovering the hidden laws common to successful combina-
tions can be a powerful way to accelerate innovations. How-
ever, discovering those hidden laws presents a daunting chal-
lenge that taxes our individual capacities to learn general-
izable concepts from experience and to communicate those
concepts to others. Here, we found that participants who
quickly identified the hidden laws in a discovery game were
more efficient in discovering new, more powerful combina-
tions of items, and collected more points in total. Our re-
sults also suggest that people rely on inductive biases when
learning and communicating about the hidden laws of recom-

bination. Specifically, in the experiment, we designed three
hidden laws that had similar numbers of positive recipes, but
differed in their compressibility. Overall, participants earned
more points in environments governed by more compress-
ible laws. Further, we found an inverse-U relationship be-
tween compressibility and communication effort when partic-
ipants left messages about these hidden laws for future play-
ers. Participants used the most words to express the hidden
laws in the medium-compressibility condition, and they used
fewer words to express highly-compressible and uncompress-
ible hidden laws.

Directly modeling people’s behavior in the discovery game
studied in this paper faces significant computational hurdles.
A key facet of the discovery game is that labeled examples
are not simply provided but rather must be discovered (Co-
enen et al., 2015; Bramley et al., 2017; Gong et al., 2023)
through prudent exploration (Cohen et al., 2007; Mehlhorn
et al., 2015). While CultuRL (Prystawski et al., 2023) offers
one promising framework capturing this difficult exploration
challenge subject to limited communication, even instantiat-
ing the base PSRL algorithm is computationally onerous for a
discovery game due to the combinatorially-large state-action
space. In future work, we aim to develop more efficient al-
gorithms to tackle the inefficiencies of PSRL by leveraging
known methods in inductive learning and approximate solu-
tions.

As our results suggest, people drew on inductive biases to
navigate this game. We operationalized these inductive bi-
ases with a compressibility measures (Feldman, 2000), which
naturally connects with a Bayesian interpretation (Goodman
et al., 2008). The sub-task of discovering the hidden law in
our setup can be cast as a relational concept learning prob-
lem (Lake et al., 2015; Fränken et al., 2022; Zhao, Lucas,
& Bramley, 2024), opening up the possibility of introducing
abstract structures to the standard state space in MDPs (Li
et al., 2006). Recent advances in Bayesian library learning
further showcased how cognitively-contained learners may
unlock increasingly complex concepts by boostrapping on
past discoveries (Zhao, Lucas, & Bramley, 2024), providing a
promising perspective to understand how knowledge of suc-
cessful combinations may grow beyond capacity constraints.

Science is a process (Hull, 1990). The power of pushing
observations through a communication channel is not just an
efficient form of note-taking, but a way to enable the collec-
tive effort of searching for data and adapting theories. For
example, physicists today do not have to rediscover Newto-
nian laws of physics, thanks to the fact that Newton had com-
pressed and communicated his search results effectively. We
are also keen to extend our work to examine how knowledge
accumulates over multiple generation of learners, and how
communication may scaffold, or shape, the search trajecto-
ries in communities (Derex & Boyd, 2016; Muthukrishna &
Henrich, 2016; B. Thompson et al., 2022). By compressing
the results of our experiment in this paper, we hope we may
help others make their own discoveries.
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