Bootstrapping compositional generalization with cache-and-reuse

Bonan Zhao (b.zhao@ed.ac.uk)
Department of Psychology, University of Edinburgh

Christopher G. Lucas (c.lucas@ed.ac.uk)
School of Informatics, University of Edinburgh

Neil R. Bramley (neil.bramley@ed.ac.uk)
Department of Psychology, University of Edinburgh

Abstract

People effectively reuse previously learned concepts to construct more complex concepts, and sometimes this can lead to systematically different beliefs when the same evidence is processed in different orders. We model these phenomena with a novel Bayesian concept learning framework that incorporates adaptor grammars to enable a dynamic concept library that is enriched over time, allowing for caching and later reusing elements of earlier insights in a principled way. Our model accounts for unique curriculum-order and conceptual garden-pathing effects in compositional causal generalization that alternative models fail to capture: While people can successfully acquire a complex causal concept when they have an opportunity to cache a key sub-concept, simply reversing the presentation order of the same learning examples induces dramatic failures, and leads people to complex and ad hoc concepts. This work provides an explanation for why information selection alone is not enough to teach complex concepts, and offers a computational account of how past experiences shape future conceptual discoveries.

Keywords: concept learning; compositional generalization; Bayesian-symbolic models; adaptor grammars; order effects; garden-pathing

Introduction

People have a remarkable ability to develop rich and complex causal concepts despite our limited cognitive capacities (Griffiths, Lieder, & Goodman, 2015; Newell & Simon, 1972). We achieve this, partly, by effectively re-using, re-combining, or re-purposing existing knowledge (Gobet et al., 2001). This ability to bootstrap enables us to grow rich mental concepts incrementally that go beyond our limited cognitive resources—indeed, this is taken to be a cornerstone of cognitive development (Carey, 2004). Crucially, a model of conceptual bootstrapping posits learning not as optimal summarization of the environment, but as inherently and fundamentally path- and knowledge-dependent: Successful search for a complex causal concept is heavily reliant on having good, previously-learned abstractions (Dechter, Malmaud, Adams, & Tenenbaum, 2013; Gelpi, Prystawski, Lucas, & Buchsbaum, 2020).

Zhao, Bramley, and Lucas (2022) proposed a computational model of conceptual bootstrapping that attempts to formalize this crucial human learning ability in a Bayesian-symbolic concept learning framework. This is an algorithmic-level model of the computational problem of human concept discovery. Drawing on combinatory logic and adaptor grammars (Liang, Jordan, & Klein, 2010), this model implements a dynamic concept library that can cache sub-concepts and therefore later reuse them to construct more complex concepts (Fig. 1A). This model predicts conceptual garden-pathing and curriculum-order effects, such that processing the same information in different orders leads to different learned concepts, as a result of different sub-concepts acquired in the process of learning. We further test the validity of this model by conducting replicating and follow-up experiments, and comparing the original model with several alternatives.

Methods

Experiments

Zhao et al. (2022) tested causal concept learning using animated geometric objects called a causal agent (A), recipient (R), and result (R'). An agent object A has stripes and spots on it, and a recipient object R is composed of several segments (Fig. 1B, shaded panels). When A touches R, A can change the number of segments on R to change, bringing the result R' (Fig. 1B, white panels). Zhao et al.
Gaussian process regression (GpReg) model with radial basis function kernels one per feature. We made predictions about the novel object pairs using fitted models, and evaluated model predictions with their log-likelihood LL of producing participants’ predictions. The baseline model is random selection (rand).

Results and Discussion

Since the feature-counterbalancing did not interfere with the main behavioral results, we collapsed across these in analysis. As shown in Fig. 2A, model AGR achieves the greatest improvement of fit over baseline, with the three Bayesian-symbolic models (AGR, AG, RR) easily outperforming similarity-based or regression models. With fitted model parameters, Fig. 2B plots generalization accuracy in each phase for each curriculum between model and people. Again, AGR best predicts people’s performance across all cases, and the non-symbolic models fail to match people’s predictions.

Fig. 2C plotted average accuracy achieved by human participants in black bars. The difference in Phase II accuracy between the construct and de-construct curricula revealed strong curriculum-order and conceptual garden-pathing effects. Model RR fails to reproduce such effects, because this model is likely to have figured ground truth after seeing all the data, even for the de-construct curriculum, and thus deviating from how people process phases of information. Model AG, on the other hand, is defeated by the learning trap as many people were, exhibiting no accuracy improvement in Phase II relative to Phase I. Model AGR mixes model AG with some re-processing, and is therefore able to capture participants’ modest improvement in de-construct Phase II generalizations.

Overall, these results suggest that curriculum-order and conceptual garden-pathing effects exhibited by people can be explained as consequences of a cache-and-reuse mechanism expanding the reach of a bounded learning system. Critically, these phenomena cannot be explained by a standard Bayesian-symbolic model out of the box, or by familiar sub-symbolic categorization models, showcasing that a cache-and-reuse mechanism is central to human-like inductive inference to compositional concepts.
Acknowledgments

B. Zhao is supported by CAHSS Research Award and Great Britain-China Educational Trust. N.R. Bramley and C. G. Lucas are supported by an EPSRC New Investigator Grant (EP/T033967/1).

References

